Description: An equality theorem for substitution. (Contributed by NM, 2-Jun-1993) (Proof shortened by Wolf Lammen, 23-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | sbequ12a | |- ( x = y -> ( [ y / x ] ph <-> [ x / y ] ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbequ12r | |- ( x = y -> ( [ x / y ] ph <-> ph ) ) |
|
2 | sbequ12 | |- ( x = y -> ( ph <-> [ y / x ] ph ) ) |
|
3 | 1 2 | bitr2d | |- ( x = y -> ( [ y / x ] ph <-> [ x / y ] ph ) ) |