Description: An equality theorem for substitution. (Contributed by NM, 2-Jun-1993) (Proof shortened by Wolf Lammen, 23-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbequ12a | |- ( x = y -> ( [ y / x ] ph <-> [ x / y ] ph ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sbequ12r | |- ( x = y -> ( [ x / y ] ph <-> ph ) ) | |
| 2 | sbequ12 | |- ( x = y -> ( ph <-> [ y / x ] ph ) ) | |
| 3 | 1 2 | bitr2d | |- ( x = y -> ( [ y / x ] ph <-> [ x / y ] ph ) ) |