| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-sb |
|- ( [ t / x ] ph <-> A. y ( y = t -> A. x ( x = y -> ph ) ) ) |
| 2 |
1
|
biimpi |
|- ( [ t / x ] ph -> A. y ( y = t -> A. x ( x = y -> ph ) ) ) |
| 3 |
|
equvinva |
|- ( x = t -> E. y ( x = y /\ t = y ) ) |
| 4 |
|
equcomi |
|- ( t = y -> y = t ) |
| 5 |
|
sp |
|- ( A. x ( x = y -> ph ) -> ( x = y -> ph ) ) |
| 6 |
4 5
|
imim12i |
|- ( ( y = t -> A. x ( x = y -> ph ) ) -> ( t = y -> ( x = y -> ph ) ) ) |
| 7 |
6
|
impcomd |
|- ( ( y = t -> A. x ( x = y -> ph ) ) -> ( ( x = y /\ t = y ) -> ph ) ) |
| 8 |
7
|
aleximi |
|- ( A. y ( y = t -> A. x ( x = y -> ph ) ) -> ( E. y ( x = y /\ t = y ) -> E. y ph ) ) |
| 9 |
2 3 8
|
syl2im |
|- ( [ t / x ] ph -> ( x = t -> E. y ph ) ) |
| 10 |
|
ax5e |
|- ( E. y ph -> ph ) |
| 11 |
9 10
|
syl6com |
|- ( x = t -> ( [ t / x ] ph -> ph ) ) |