Step |
Hyp |
Ref |
Expression |
1 |
|
equvinva |
|- ( x = t -> E. y ( x = y /\ t = y ) ) |
2 |
|
df-sb |
|- ( [ t / x ] ph <-> A. y ( y = t -> A. x ( x = y -> ph ) ) ) |
3 |
|
equcomi |
|- ( t = y -> y = t ) |
4 |
|
sp |
|- ( A. x ( x = y -> ph ) -> ( x = y -> ph ) ) |
5 |
3 4
|
imim12i |
|- ( ( y = t -> A. x ( x = y -> ph ) ) -> ( t = y -> ( x = y -> ph ) ) ) |
6 |
5
|
impcomd |
|- ( ( y = t -> A. x ( x = y -> ph ) ) -> ( ( x = y /\ t = y ) -> ph ) ) |
7 |
6
|
alimi |
|- ( A. y ( y = t -> A. x ( x = y -> ph ) ) -> A. y ( ( x = y /\ t = y ) -> ph ) ) |
8 |
2 7
|
sylbi |
|- ( [ t / x ] ph -> A. y ( ( x = y /\ t = y ) -> ph ) ) |
9 |
|
19.23v |
|- ( A. y ( ( x = y /\ t = y ) -> ph ) <-> ( E. y ( x = y /\ t = y ) -> ph ) ) |
10 |
8 9
|
sylib |
|- ( [ t / x ] ph -> ( E. y ( x = y /\ t = y ) -> ph ) ) |
11 |
1 10
|
syl5com |
|- ( x = t -> ( [ t / x ] ph -> ph ) ) |