Metamath Proof Explorer


Theorem sbft

Description: Substitution has no effect on a nonfree variable. (Contributed by NM, 30-May-2009) (Revised by Mario Carneiro, 12-Oct-2016) (Proof shortened by Wolf Lammen, 3-May-2018)

Ref Expression
Assertion sbft
|- ( F/ x ph -> ( [ y / x ] ph <-> ph ) )

Proof

Step Hyp Ref Expression
1 spsbe
 |-  ( [ y / x ] ph -> E. x ph )
2 19.9t
 |-  ( F/ x ph -> ( E. x ph <-> ph ) )
3 1 2 syl5ib
 |-  ( F/ x ph -> ( [ y / x ] ph -> ph ) )
4 nf5r
 |-  ( F/ x ph -> ( ph -> A. x ph ) )
5 stdpc4
 |-  ( A. x ph -> [ y / x ] ph )
6 4 5 syl6
 |-  ( F/ x ph -> ( ph -> [ y / x ] ph ) )
7 3 6 impbid
 |-  ( F/ x ph -> ( [ y / x ] ph <-> ph ) )