| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
| 2 |
1
|
zcnd |
|- ( P e. Prime -> P e. CC ) |
| 3 |
|
prmz |
|- ( Q e. Prime -> Q e. ZZ ) |
| 4 |
3
|
zcnd |
|- ( Q e. Prime -> Q e. CC ) |
| 5 |
|
addcom |
|- ( ( P e. CC /\ Q e. CC ) -> ( P + Q ) = ( Q + P ) ) |
| 6 |
2 4 5
|
syl2anr |
|- ( ( Q e. Prime /\ P e. Prime ) -> ( P + Q ) = ( Q + P ) ) |
| 7 |
6
|
eqeq2d |
|- ( ( Q e. Prime /\ P e. Prime ) -> ( N = ( P + Q ) <-> N = ( Q + P ) ) ) |
| 8 |
7
|
3anbi3d |
|- ( ( Q e. Prime /\ P e. Prime ) -> ( ( N e. Even /\ 4 < N /\ N = ( P + Q ) ) <-> ( N e. Even /\ 4 < N /\ N = ( Q + P ) ) ) ) |
| 9 |
|
sbgoldbaltlem1 |
|- ( ( Q e. Prime /\ P e. Prime ) -> ( ( N e. Even /\ 4 < N /\ N = ( Q + P ) ) -> P e. Odd ) ) |
| 10 |
8 9
|
sylbid |
|- ( ( Q e. Prime /\ P e. Prime ) -> ( ( N e. Even /\ 4 < N /\ N = ( P + Q ) ) -> P e. Odd ) ) |
| 11 |
10
|
ancoms |
|- ( ( P e. Prime /\ Q e. Prime ) -> ( ( N e. Even /\ 4 < N /\ N = ( P + Q ) ) -> P e. Odd ) ) |
| 12 |
|
sbgoldbaltlem1 |
|- ( ( P e. Prime /\ Q e. Prime ) -> ( ( N e. Even /\ 4 < N /\ N = ( P + Q ) ) -> Q e. Odd ) ) |
| 13 |
11 12
|
jcad |
|- ( ( P e. Prime /\ Q e. Prime ) -> ( ( N e. Even /\ 4 < N /\ N = ( P + Q ) ) -> ( P e. Odd /\ Q e. Odd ) ) ) |