Metamath Proof Explorer


Theorem sbgoldbb

Description: If the strong binary Goldbach conjecture is valid, the binary Goldbach conjecture is valid. (Contributed by AV, 23-Dec-2021)

Ref Expression
Assertion sbgoldbb
|- ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> A. n e. Even ( 2 < n -> E. p e. Prime E. q e. Prime n = ( p + q ) ) )

Proof

Step Hyp Ref Expression
1 sbgoldbalt
 |-  ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) <-> A. n e. Even ( 2 < n -> E. p e. Prime E. q e. Prime n = ( p + q ) ) )
2 1 biimpi
 |-  ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> A. n e. Even ( 2 < n -> E. p e. Prime E. q e. Prime n = ( p + q ) ) )