| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbgoldbo.p |
|- P = ( { 1 } u. Prime ) |
| 2 |
|
nfra1 |
|- F/ n A. n e. Even ( 4 < n -> n e. GoldbachEven ) |
| 3 |
|
3z |
|- 3 e. ZZ |
| 4 |
|
6nn |
|- 6 e. NN |
| 5 |
4
|
nnzi |
|- 6 e. ZZ |
| 6 |
|
3re |
|- 3 e. RR |
| 7 |
|
6re |
|- 6 e. RR |
| 8 |
|
3lt6 |
|- 3 < 6 |
| 9 |
6 7 8
|
ltleii |
|- 3 <_ 6 |
| 10 |
|
eluz2 |
|- ( 6 e. ( ZZ>= ` 3 ) <-> ( 3 e. ZZ /\ 6 e. ZZ /\ 3 <_ 6 ) ) |
| 11 |
3 5 9 10
|
mpbir3an |
|- 6 e. ( ZZ>= ` 3 ) |
| 12 |
|
uzsplit |
|- ( 6 e. ( ZZ>= ` 3 ) -> ( ZZ>= ` 3 ) = ( ( 3 ... ( 6 - 1 ) ) u. ( ZZ>= ` 6 ) ) ) |
| 13 |
12
|
eleq2d |
|- ( 6 e. ( ZZ>= ` 3 ) -> ( n e. ( ZZ>= ` 3 ) <-> n e. ( ( 3 ... ( 6 - 1 ) ) u. ( ZZ>= ` 6 ) ) ) ) |
| 14 |
11 13
|
ax-mp |
|- ( n e. ( ZZ>= ` 3 ) <-> n e. ( ( 3 ... ( 6 - 1 ) ) u. ( ZZ>= ` 6 ) ) ) |
| 15 |
|
elun |
|- ( n e. ( ( 3 ... ( 6 - 1 ) ) u. ( ZZ>= ` 6 ) ) <-> ( n e. ( 3 ... ( 6 - 1 ) ) \/ n e. ( ZZ>= ` 6 ) ) ) |
| 16 |
|
6m1e5 |
|- ( 6 - 1 ) = 5 |
| 17 |
16
|
oveq2i |
|- ( 3 ... ( 6 - 1 ) ) = ( 3 ... 5 ) |
| 18 |
|
5nn |
|- 5 e. NN |
| 19 |
18
|
nnzi |
|- 5 e. ZZ |
| 20 |
|
5re |
|- 5 e. RR |
| 21 |
|
3lt5 |
|- 3 < 5 |
| 22 |
6 20 21
|
ltleii |
|- 3 <_ 5 |
| 23 |
|
eluz2 |
|- ( 5 e. ( ZZ>= ` 3 ) <-> ( 3 e. ZZ /\ 5 e. ZZ /\ 3 <_ 5 ) ) |
| 24 |
3 19 22 23
|
mpbir3an |
|- 5 e. ( ZZ>= ` 3 ) |
| 25 |
|
fzopredsuc |
|- ( 5 e. ( ZZ>= ` 3 ) -> ( 3 ... 5 ) = ( ( { 3 } u. ( ( 3 + 1 ) ..^ 5 ) ) u. { 5 } ) ) |
| 26 |
24 25
|
ax-mp |
|- ( 3 ... 5 ) = ( ( { 3 } u. ( ( 3 + 1 ) ..^ 5 ) ) u. { 5 } ) |
| 27 |
17 26
|
eqtri |
|- ( 3 ... ( 6 - 1 ) ) = ( ( { 3 } u. ( ( 3 + 1 ) ..^ 5 ) ) u. { 5 } ) |
| 28 |
27
|
eleq2i |
|- ( n e. ( 3 ... ( 6 - 1 ) ) <-> n e. ( ( { 3 } u. ( ( 3 + 1 ) ..^ 5 ) ) u. { 5 } ) ) |
| 29 |
|
elun |
|- ( n e. ( ( { 3 } u. ( ( 3 + 1 ) ..^ 5 ) ) u. { 5 } ) <-> ( n e. ( { 3 } u. ( ( 3 + 1 ) ..^ 5 ) ) \/ n e. { 5 } ) ) |
| 30 |
|
elun |
|- ( n e. ( { 3 } u. ( ( 3 + 1 ) ..^ 5 ) ) <-> ( n e. { 3 } \/ n e. ( ( 3 + 1 ) ..^ 5 ) ) ) |
| 31 |
|
elsni |
|- ( n e. { 3 } -> n = 3 ) |
| 32 |
|
1ex |
|- 1 e. _V |
| 33 |
32
|
snid |
|- 1 e. { 1 } |
| 34 |
33
|
orci |
|- ( 1 e. { 1 } \/ 1 e. Prime ) |
| 35 |
|
elun |
|- ( 1 e. ( { 1 } u. Prime ) <-> ( 1 e. { 1 } \/ 1 e. Prime ) ) |
| 36 |
34 35
|
mpbir |
|- 1 e. ( { 1 } u. Prime ) |
| 37 |
36 1
|
eleqtrri |
|- 1 e. P |
| 38 |
37
|
a1i |
|- ( n = 3 -> 1 e. P ) |
| 39 |
|
simpl |
|- ( ( n = 3 /\ p = 1 ) -> n = 3 ) |
| 40 |
|
oveq1 |
|- ( p = 1 -> ( p + q ) = ( 1 + q ) ) |
| 41 |
40
|
oveq1d |
|- ( p = 1 -> ( ( p + q ) + r ) = ( ( 1 + q ) + r ) ) |
| 42 |
41
|
adantl |
|- ( ( n = 3 /\ p = 1 ) -> ( ( p + q ) + r ) = ( ( 1 + q ) + r ) ) |
| 43 |
39 42
|
eqeq12d |
|- ( ( n = 3 /\ p = 1 ) -> ( n = ( ( p + q ) + r ) <-> 3 = ( ( 1 + q ) + r ) ) ) |
| 44 |
43
|
2rexbidv |
|- ( ( n = 3 /\ p = 1 ) -> ( E. q e. P E. r e. P n = ( ( p + q ) + r ) <-> E. q e. P E. r e. P 3 = ( ( 1 + q ) + r ) ) ) |
| 45 |
|
oveq2 |
|- ( q = 1 -> ( 1 + q ) = ( 1 + 1 ) ) |
| 46 |
45
|
oveq1d |
|- ( q = 1 -> ( ( 1 + q ) + r ) = ( ( 1 + 1 ) + r ) ) |
| 47 |
46
|
eqeq2d |
|- ( q = 1 -> ( 3 = ( ( 1 + q ) + r ) <-> 3 = ( ( 1 + 1 ) + r ) ) ) |
| 48 |
47
|
rexbidv |
|- ( q = 1 -> ( E. r e. P 3 = ( ( 1 + q ) + r ) <-> E. r e. P 3 = ( ( 1 + 1 ) + r ) ) ) |
| 49 |
48
|
adantl |
|- ( ( n = 3 /\ q = 1 ) -> ( E. r e. P 3 = ( ( 1 + q ) + r ) <-> E. r e. P 3 = ( ( 1 + 1 ) + r ) ) ) |
| 50 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
| 51 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
| 52 |
51
|
oveq1i |
|- ( 2 + 1 ) = ( ( 1 + 1 ) + 1 ) |
| 53 |
50 52
|
eqtri |
|- 3 = ( ( 1 + 1 ) + 1 ) |
| 54 |
|
oveq2 |
|- ( r = 1 -> ( ( 1 + 1 ) + r ) = ( ( 1 + 1 ) + 1 ) ) |
| 55 |
53 54
|
eqtr4id |
|- ( r = 1 -> 3 = ( ( 1 + 1 ) + r ) ) |
| 56 |
55
|
adantl |
|- ( ( n = 3 /\ r = 1 ) -> 3 = ( ( 1 + 1 ) + r ) ) |
| 57 |
38 56
|
rspcedeq2vd |
|- ( n = 3 -> E. r e. P 3 = ( ( 1 + 1 ) + r ) ) |
| 58 |
38 49 57
|
rspcedvd |
|- ( n = 3 -> E. q e. P E. r e. P 3 = ( ( 1 + q ) + r ) ) |
| 59 |
38 44 58
|
rspcedvd |
|- ( n = 3 -> E. p e. P E. q e. P E. r e. P n = ( ( p + q ) + r ) ) |
| 60 |
31 59
|
syl |
|- ( n e. { 3 } -> E. p e. P E. q e. P E. r e. P n = ( ( p + q ) + r ) ) |
| 61 |
|
3p1e4 |
|- ( 3 + 1 ) = 4 |
| 62 |
|
df-5 |
|- 5 = ( 4 + 1 ) |
| 63 |
61 62
|
oveq12i |
|- ( ( 3 + 1 ) ..^ 5 ) = ( 4 ..^ ( 4 + 1 ) ) |
| 64 |
|
4z |
|- 4 e. ZZ |
| 65 |
|
fzval3 |
|- ( 4 e. ZZ -> ( 4 ... 4 ) = ( 4 ..^ ( 4 + 1 ) ) ) |
| 66 |
64 65
|
ax-mp |
|- ( 4 ... 4 ) = ( 4 ..^ ( 4 + 1 ) ) |
| 67 |
63 66
|
eqtr4i |
|- ( ( 3 + 1 ) ..^ 5 ) = ( 4 ... 4 ) |
| 68 |
67
|
eleq2i |
|- ( n e. ( ( 3 + 1 ) ..^ 5 ) <-> n e. ( 4 ... 4 ) ) |
| 69 |
|
fzsn |
|- ( 4 e. ZZ -> ( 4 ... 4 ) = { 4 } ) |
| 70 |
64 69
|
ax-mp |
|- ( 4 ... 4 ) = { 4 } |
| 71 |
70
|
eleq2i |
|- ( n e. ( 4 ... 4 ) <-> n e. { 4 } ) |
| 72 |
68 71
|
bitri |
|- ( n e. ( ( 3 + 1 ) ..^ 5 ) <-> n e. { 4 } ) |
| 73 |
|
elsni |
|- ( n e. { 4 } -> n = 4 ) |
| 74 |
|
2prm |
|- 2 e. Prime |
| 75 |
74
|
olci |
|- ( 2 e. { 1 } \/ 2 e. Prime ) |
| 76 |
|
elun |
|- ( 2 e. ( { 1 } u. Prime ) <-> ( 2 e. { 1 } \/ 2 e. Prime ) ) |
| 77 |
75 76
|
mpbir |
|- 2 e. ( { 1 } u. Prime ) |
| 78 |
77 1
|
eleqtrri |
|- 2 e. P |
| 79 |
78
|
a1i |
|- ( n = 4 -> 2 e. P ) |
| 80 |
|
oveq1 |
|- ( p = 2 -> ( p + q ) = ( 2 + q ) ) |
| 81 |
80
|
oveq1d |
|- ( p = 2 -> ( ( p + q ) + r ) = ( ( 2 + q ) + r ) ) |
| 82 |
81
|
eqeq2d |
|- ( p = 2 -> ( n = ( ( p + q ) + r ) <-> n = ( ( 2 + q ) + r ) ) ) |
| 83 |
82
|
2rexbidv |
|- ( p = 2 -> ( E. q e. P E. r e. P n = ( ( p + q ) + r ) <-> E. q e. P E. r e. P n = ( ( 2 + q ) + r ) ) ) |
| 84 |
83
|
adantl |
|- ( ( n = 4 /\ p = 2 ) -> ( E. q e. P E. r e. P n = ( ( p + q ) + r ) <-> E. q e. P E. r e. P n = ( ( 2 + q ) + r ) ) ) |
| 85 |
37
|
a1i |
|- ( n = 4 -> 1 e. P ) |
| 86 |
|
oveq2 |
|- ( q = 1 -> ( 2 + q ) = ( 2 + 1 ) ) |
| 87 |
86
|
oveq1d |
|- ( q = 1 -> ( ( 2 + q ) + r ) = ( ( 2 + 1 ) + r ) ) |
| 88 |
87
|
eqeq2d |
|- ( q = 1 -> ( n = ( ( 2 + q ) + r ) <-> n = ( ( 2 + 1 ) + r ) ) ) |
| 89 |
88
|
rexbidv |
|- ( q = 1 -> ( E. r e. P n = ( ( 2 + q ) + r ) <-> E. r e. P n = ( ( 2 + 1 ) + r ) ) ) |
| 90 |
89
|
adantl |
|- ( ( n = 4 /\ q = 1 ) -> ( E. r e. P n = ( ( 2 + q ) + r ) <-> E. r e. P n = ( ( 2 + 1 ) + r ) ) ) |
| 91 |
|
simpl |
|- ( ( n = 4 /\ r = 1 ) -> n = 4 ) |
| 92 |
|
df-4 |
|- 4 = ( 3 + 1 ) |
| 93 |
50
|
oveq1i |
|- ( 3 + 1 ) = ( ( 2 + 1 ) + 1 ) |
| 94 |
92 93
|
eqtri |
|- 4 = ( ( 2 + 1 ) + 1 ) |
| 95 |
94
|
a1i |
|- ( ( n = 4 /\ r = 1 ) -> 4 = ( ( 2 + 1 ) + 1 ) ) |
| 96 |
|
oveq2 |
|- ( r = 1 -> ( ( 2 + 1 ) + r ) = ( ( 2 + 1 ) + 1 ) ) |
| 97 |
96
|
eqcomd |
|- ( r = 1 -> ( ( 2 + 1 ) + 1 ) = ( ( 2 + 1 ) + r ) ) |
| 98 |
97
|
adantl |
|- ( ( n = 4 /\ r = 1 ) -> ( ( 2 + 1 ) + 1 ) = ( ( 2 + 1 ) + r ) ) |
| 99 |
95 98
|
eqtrd |
|- ( ( n = 4 /\ r = 1 ) -> 4 = ( ( 2 + 1 ) + r ) ) |
| 100 |
91 99
|
eqtrd |
|- ( ( n = 4 /\ r = 1 ) -> n = ( ( 2 + 1 ) + r ) ) |
| 101 |
85 100
|
rspcedeq2vd |
|- ( n = 4 -> E. r e. P n = ( ( 2 + 1 ) + r ) ) |
| 102 |
85 90 101
|
rspcedvd |
|- ( n = 4 -> E. q e. P E. r e. P n = ( ( 2 + q ) + r ) ) |
| 103 |
79 84 102
|
rspcedvd |
|- ( n = 4 -> E. p e. P E. q e. P E. r e. P n = ( ( p + q ) + r ) ) |
| 104 |
73 103
|
syl |
|- ( n e. { 4 } -> E. p e. P E. q e. P E. r e. P n = ( ( p + q ) + r ) ) |
| 105 |
72 104
|
sylbi |
|- ( n e. ( ( 3 + 1 ) ..^ 5 ) -> E. p e. P E. q e. P E. r e. P n = ( ( p + q ) + r ) ) |
| 106 |
60 105
|
jaoi |
|- ( ( n e. { 3 } \/ n e. ( ( 3 + 1 ) ..^ 5 ) ) -> E. p e. P E. q e. P E. r e. P n = ( ( p + q ) + r ) ) |
| 107 |
30 106
|
sylbi |
|- ( n e. ( { 3 } u. ( ( 3 + 1 ) ..^ 5 ) ) -> E. p e. P E. q e. P E. r e. P n = ( ( p + q ) + r ) ) |
| 108 |
|
elsni |
|- ( n e. { 5 } -> n = 5 ) |
| 109 |
|
3prm |
|- 3 e. Prime |
| 110 |
109
|
olci |
|- ( 3 e. { 1 } \/ 3 e. Prime ) |
| 111 |
|
elun |
|- ( 3 e. ( { 1 } u. Prime ) <-> ( 3 e. { 1 } \/ 3 e. Prime ) ) |
| 112 |
110 111
|
mpbir |
|- 3 e. ( { 1 } u. Prime ) |
| 113 |
112 1
|
eleqtrri |
|- 3 e. P |
| 114 |
113
|
a1i |
|- ( n = 5 -> 3 e. P ) |
| 115 |
|
oveq1 |
|- ( p = 3 -> ( p + q ) = ( 3 + q ) ) |
| 116 |
115
|
oveq1d |
|- ( p = 3 -> ( ( p + q ) + r ) = ( ( 3 + q ) + r ) ) |
| 117 |
116
|
eqeq2d |
|- ( p = 3 -> ( n = ( ( p + q ) + r ) <-> n = ( ( 3 + q ) + r ) ) ) |
| 118 |
117
|
2rexbidv |
|- ( p = 3 -> ( E. q e. P E. r e. P n = ( ( p + q ) + r ) <-> E. q e. P E. r e. P n = ( ( 3 + q ) + r ) ) ) |
| 119 |
118
|
adantl |
|- ( ( n = 5 /\ p = 3 ) -> ( E. q e. P E. r e. P n = ( ( p + q ) + r ) <-> E. q e. P E. r e. P n = ( ( 3 + q ) + r ) ) ) |
| 120 |
37
|
a1i |
|- ( n = 5 -> 1 e. P ) |
| 121 |
|
oveq2 |
|- ( q = 1 -> ( 3 + q ) = ( 3 + 1 ) ) |
| 122 |
121
|
oveq1d |
|- ( q = 1 -> ( ( 3 + q ) + r ) = ( ( 3 + 1 ) + r ) ) |
| 123 |
122
|
eqeq2d |
|- ( q = 1 -> ( n = ( ( 3 + q ) + r ) <-> n = ( ( 3 + 1 ) + r ) ) ) |
| 124 |
123
|
rexbidv |
|- ( q = 1 -> ( E. r e. P n = ( ( 3 + q ) + r ) <-> E. r e. P n = ( ( 3 + 1 ) + r ) ) ) |
| 125 |
124
|
adantl |
|- ( ( n = 5 /\ q = 1 ) -> ( E. r e. P n = ( ( 3 + q ) + r ) <-> E. r e. P n = ( ( 3 + 1 ) + r ) ) ) |
| 126 |
|
simpl |
|- ( ( n = 5 /\ r = 1 ) -> n = 5 ) |
| 127 |
92
|
oveq1i |
|- ( 4 + 1 ) = ( ( 3 + 1 ) + 1 ) |
| 128 |
62 127
|
eqtri |
|- 5 = ( ( 3 + 1 ) + 1 ) |
| 129 |
|
oveq2 |
|- ( r = 1 -> ( ( 3 + 1 ) + r ) = ( ( 3 + 1 ) + 1 ) ) |
| 130 |
128 129
|
eqtr4id |
|- ( r = 1 -> 5 = ( ( 3 + 1 ) + r ) ) |
| 131 |
130
|
adantl |
|- ( ( n = 5 /\ r = 1 ) -> 5 = ( ( 3 + 1 ) + r ) ) |
| 132 |
126 131
|
eqtrd |
|- ( ( n = 5 /\ r = 1 ) -> n = ( ( 3 + 1 ) + r ) ) |
| 133 |
120 132
|
rspcedeq2vd |
|- ( n = 5 -> E. r e. P n = ( ( 3 + 1 ) + r ) ) |
| 134 |
120 125 133
|
rspcedvd |
|- ( n = 5 -> E. q e. P E. r e. P n = ( ( 3 + q ) + r ) ) |
| 135 |
114 119 134
|
rspcedvd |
|- ( n = 5 -> E. p e. P E. q e. P E. r e. P n = ( ( p + q ) + r ) ) |
| 136 |
108 135
|
syl |
|- ( n e. { 5 } -> E. p e. P E. q e. P E. r e. P n = ( ( p + q ) + r ) ) |
| 137 |
107 136
|
jaoi |
|- ( ( n e. ( { 3 } u. ( ( 3 + 1 ) ..^ 5 ) ) \/ n e. { 5 } ) -> E. p e. P E. q e. P E. r e. P n = ( ( p + q ) + r ) ) |
| 138 |
29 137
|
sylbi |
|- ( n e. ( ( { 3 } u. ( ( 3 + 1 ) ..^ 5 ) ) u. { 5 } ) -> E. p e. P E. q e. P E. r e. P n = ( ( p + q ) + r ) ) |
| 139 |
138
|
a1d |
|- ( n e. ( ( { 3 } u. ( ( 3 + 1 ) ..^ 5 ) ) u. { 5 } ) -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> E. p e. P E. q e. P E. r e. P n = ( ( p + q ) + r ) ) ) |
| 140 |
28 139
|
sylbi |
|- ( n e. ( 3 ... ( 6 - 1 ) ) -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> E. p e. P E. q e. P E. r e. P n = ( ( p + q ) + r ) ) ) |
| 141 |
|
sbgoldbm |
|- ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> A. n e. ( ZZ>= ` 6 ) E. p e. Prime E. q e. Prime E. r e. Prime n = ( ( p + q ) + r ) ) |
| 142 |
|
rspa |
|- ( ( A. n e. ( ZZ>= ` 6 ) E. p e. Prime E. q e. Prime E. r e. Prime n = ( ( p + q ) + r ) /\ n e. ( ZZ>= ` 6 ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime n = ( ( p + q ) + r ) ) |
| 143 |
|
ssun2 |
|- Prime C_ ( { 1 } u. Prime ) |
| 144 |
143 1
|
sseqtrri |
|- Prime C_ P |
| 145 |
|
rexss |
|- ( Prime C_ P -> ( E. p e. Prime E. q e. Prime E. r e. Prime n = ( ( p + q ) + r ) <-> E. p e. P ( p e. Prime /\ E. q e. Prime E. r e. Prime n = ( ( p + q ) + r ) ) ) ) |
| 146 |
144 145
|
ax-mp |
|- ( E. p e. Prime E. q e. Prime E. r e. Prime n = ( ( p + q ) + r ) <-> E. p e. P ( p e. Prime /\ E. q e. Prime E. r e. Prime n = ( ( p + q ) + r ) ) ) |
| 147 |
|
rexss |
|- ( Prime C_ P -> ( E. q e. Prime E. r e. Prime n = ( ( p + q ) + r ) <-> E. q e. P ( q e. Prime /\ E. r e. Prime n = ( ( p + q ) + r ) ) ) ) |
| 148 |
144 147
|
ax-mp |
|- ( E. q e. Prime E. r e. Prime n = ( ( p + q ) + r ) <-> E. q e. P ( q e. Prime /\ E. r e. Prime n = ( ( p + q ) + r ) ) ) |
| 149 |
|
rexss |
|- ( Prime C_ P -> ( E. r e. Prime n = ( ( p + q ) + r ) <-> E. r e. P ( r e. Prime /\ n = ( ( p + q ) + r ) ) ) ) |
| 150 |
144 149
|
ax-mp |
|- ( E. r e. Prime n = ( ( p + q ) + r ) <-> E. r e. P ( r e. Prime /\ n = ( ( p + q ) + r ) ) ) |
| 151 |
|
simpr |
|- ( ( r e. Prime /\ n = ( ( p + q ) + r ) ) -> n = ( ( p + q ) + r ) ) |
| 152 |
151
|
reximi |
|- ( E. r e. P ( r e. Prime /\ n = ( ( p + q ) + r ) ) -> E. r e. P n = ( ( p + q ) + r ) ) |
| 153 |
150 152
|
sylbi |
|- ( E. r e. Prime n = ( ( p + q ) + r ) -> E. r e. P n = ( ( p + q ) + r ) ) |
| 154 |
153
|
adantl |
|- ( ( q e. Prime /\ E. r e. Prime n = ( ( p + q ) + r ) ) -> E. r e. P n = ( ( p + q ) + r ) ) |
| 155 |
154
|
reximi |
|- ( E. q e. P ( q e. Prime /\ E. r e. Prime n = ( ( p + q ) + r ) ) -> E. q e. P E. r e. P n = ( ( p + q ) + r ) ) |
| 156 |
148 155
|
sylbi |
|- ( E. q e. Prime E. r e. Prime n = ( ( p + q ) + r ) -> E. q e. P E. r e. P n = ( ( p + q ) + r ) ) |
| 157 |
156
|
adantl |
|- ( ( p e. Prime /\ E. q e. Prime E. r e. Prime n = ( ( p + q ) + r ) ) -> E. q e. P E. r e. P n = ( ( p + q ) + r ) ) |
| 158 |
157
|
reximi |
|- ( E. p e. P ( p e. Prime /\ E. q e. Prime E. r e. Prime n = ( ( p + q ) + r ) ) -> E. p e. P E. q e. P E. r e. P n = ( ( p + q ) + r ) ) |
| 159 |
146 158
|
sylbi |
|- ( E. p e. Prime E. q e. Prime E. r e. Prime n = ( ( p + q ) + r ) -> E. p e. P E. q e. P E. r e. P n = ( ( p + q ) + r ) ) |
| 160 |
142 159
|
syl |
|- ( ( A. n e. ( ZZ>= ` 6 ) E. p e. Prime E. q e. Prime E. r e. Prime n = ( ( p + q ) + r ) /\ n e. ( ZZ>= ` 6 ) ) -> E. p e. P E. q e. P E. r e. P n = ( ( p + q ) + r ) ) |
| 161 |
160
|
ex |
|- ( A. n e. ( ZZ>= ` 6 ) E. p e. Prime E. q e. Prime E. r e. Prime n = ( ( p + q ) + r ) -> ( n e. ( ZZ>= ` 6 ) -> E. p e. P E. q e. P E. r e. P n = ( ( p + q ) + r ) ) ) |
| 162 |
141 161
|
syl |
|- ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( n e. ( ZZ>= ` 6 ) -> E. p e. P E. q e. P E. r e. P n = ( ( p + q ) + r ) ) ) |
| 163 |
162
|
com12 |
|- ( n e. ( ZZ>= ` 6 ) -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> E. p e. P E. q e. P E. r e. P n = ( ( p + q ) + r ) ) ) |
| 164 |
140 163
|
jaoi |
|- ( ( n e. ( 3 ... ( 6 - 1 ) ) \/ n e. ( ZZ>= ` 6 ) ) -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> E. p e. P E. q e. P E. r e. P n = ( ( p + q ) + r ) ) ) |
| 165 |
15 164
|
sylbi |
|- ( n e. ( ( 3 ... ( 6 - 1 ) ) u. ( ZZ>= ` 6 ) ) -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> E. p e. P E. q e. P E. r e. P n = ( ( p + q ) + r ) ) ) |
| 166 |
165
|
com12 |
|- ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( n e. ( ( 3 ... ( 6 - 1 ) ) u. ( ZZ>= ` 6 ) ) -> E. p e. P E. q e. P E. r e. P n = ( ( p + q ) + r ) ) ) |
| 167 |
14 166
|
biimtrid |
|- ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( n e. ( ZZ>= ` 3 ) -> E. p e. P E. q e. P E. r e. P n = ( ( p + q ) + r ) ) ) |
| 168 |
2 167
|
ralrimi |
|- ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> A. n e. ( ZZ>= ` 3 ) E. p e. P E. q e. P E. r e. P n = ( ( p + q ) + r ) ) |