| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
|- ( ( m e. Odd /\ 7 < m ) -> m e. Odd ) |
| 2 |
|
3odd |
|- 3 e. Odd |
| 3 |
1 2
|
jctir |
|- ( ( m e. Odd /\ 7 < m ) -> ( m e. Odd /\ 3 e. Odd ) ) |
| 4 |
|
omoeALTV |
|- ( ( m e. Odd /\ 3 e. Odd ) -> ( m - 3 ) e. Even ) |
| 5 |
|
breq2 |
|- ( n = ( m - 3 ) -> ( 4 < n <-> 4 < ( m - 3 ) ) ) |
| 6 |
|
eleq1 |
|- ( n = ( m - 3 ) -> ( n e. GoldbachEven <-> ( m - 3 ) e. GoldbachEven ) ) |
| 7 |
5 6
|
imbi12d |
|- ( n = ( m - 3 ) -> ( ( 4 < n -> n e. GoldbachEven ) <-> ( 4 < ( m - 3 ) -> ( m - 3 ) e. GoldbachEven ) ) ) |
| 8 |
7
|
rspcv |
|- ( ( m - 3 ) e. Even -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( 4 < ( m - 3 ) -> ( m - 3 ) e. GoldbachEven ) ) ) |
| 9 |
3 4 8
|
3syl |
|- ( ( m e. Odd /\ 7 < m ) -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( 4 < ( m - 3 ) -> ( m - 3 ) e. GoldbachEven ) ) ) |
| 10 |
|
4p3e7 |
|- ( 4 + 3 ) = 7 |
| 11 |
10
|
breq1i |
|- ( ( 4 + 3 ) < m <-> 7 < m ) |
| 12 |
|
4re |
|- 4 e. RR |
| 13 |
12
|
a1i |
|- ( m e. Odd -> 4 e. RR ) |
| 14 |
|
3re |
|- 3 e. RR |
| 15 |
14
|
a1i |
|- ( m e. Odd -> 3 e. RR ) |
| 16 |
|
oddz |
|- ( m e. Odd -> m e. ZZ ) |
| 17 |
16
|
zred |
|- ( m e. Odd -> m e. RR ) |
| 18 |
13 15 17
|
ltaddsubd |
|- ( m e. Odd -> ( ( 4 + 3 ) < m <-> 4 < ( m - 3 ) ) ) |
| 19 |
18
|
biimpd |
|- ( m e. Odd -> ( ( 4 + 3 ) < m -> 4 < ( m - 3 ) ) ) |
| 20 |
11 19
|
biimtrrid |
|- ( m e. Odd -> ( 7 < m -> 4 < ( m - 3 ) ) ) |
| 21 |
20
|
imp |
|- ( ( m e. Odd /\ 7 < m ) -> 4 < ( m - 3 ) ) |
| 22 |
|
pm2.27 |
|- ( 4 < ( m - 3 ) -> ( ( 4 < ( m - 3 ) -> ( m - 3 ) e. GoldbachEven ) -> ( m - 3 ) e. GoldbachEven ) ) |
| 23 |
21 22
|
syl |
|- ( ( m e. Odd /\ 7 < m ) -> ( ( 4 < ( m - 3 ) -> ( m - 3 ) e. GoldbachEven ) -> ( m - 3 ) e. GoldbachEven ) ) |
| 24 |
|
isgbe |
|- ( ( m - 3 ) e. GoldbachEven <-> ( ( m - 3 ) e. Even /\ E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ ( m - 3 ) = ( p + q ) ) ) ) |
| 25 |
|
3prm |
|- 3 e. Prime |
| 26 |
25
|
a1i |
|- ( ( ( ( ( m e. Odd /\ 7 < m ) /\ p e. Prime ) /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ ( m - 3 ) = ( p + q ) ) ) -> 3 e. Prime ) |
| 27 |
|
eleq1 |
|- ( r = 3 -> ( r e. Odd <-> 3 e. Odd ) ) |
| 28 |
27
|
3anbi3d |
|- ( r = 3 -> ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) <-> ( p e. Odd /\ q e. Odd /\ 3 e. Odd ) ) ) |
| 29 |
|
oveq2 |
|- ( r = 3 -> ( ( p + q ) + r ) = ( ( p + q ) + 3 ) ) |
| 30 |
29
|
eqeq2d |
|- ( r = 3 -> ( m = ( ( p + q ) + r ) <-> m = ( ( p + q ) + 3 ) ) ) |
| 31 |
28 30
|
anbi12d |
|- ( r = 3 -> ( ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ m = ( ( p + q ) + r ) ) <-> ( ( p e. Odd /\ q e. Odd /\ 3 e. Odd ) /\ m = ( ( p + q ) + 3 ) ) ) ) |
| 32 |
31
|
adantl |
|- ( ( ( ( ( ( m e. Odd /\ 7 < m ) /\ p e. Prime ) /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ ( m - 3 ) = ( p + q ) ) ) /\ r = 3 ) -> ( ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ m = ( ( p + q ) + r ) ) <-> ( ( p e. Odd /\ q e. Odd /\ 3 e. Odd ) /\ m = ( ( p + q ) + 3 ) ) ) ) |
| 33 |
|
simp1 |
|- ( ( p e. Odd /\ q e. Odd /\ ( m - 3 ) = ( p + q ) ) -> p e. Odd ) |
| 34 |
|
simp2 |
|- ( ( p e. Odd /\ q e. Odd /\ ( m - 3 ) = ( p + q ) ) -> q e. Odd ) |
| 35 |
2
|
a1i |
|- ( ( p e. Odd /\ q e. Odd /\ ( m - 3 ) = ( p + q ) ) -> 3 e. Odd ) |
| 36 |
33 34 35
|
3jca |
|- ( ( p e. Odd /\ q e. Odd /\ ( m - 3 ) = ( p + q ) ) -> ( p e. Odd /\ q e. Odd /\ 3 e. Odd ) ) |
| 37 |
36
|
adantl |
|- ( ( ( ( ( m e. Odd /\ 7 < m ) /\ p e. Prime ) /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ ( m - 3 ) = ( p + q ) ) ) -> ( p e. Odd /\ q e. Odd /\ 3 e. Odd ) ) |
| 38 |
16
|
zcnd |
|- ( m e. Odd -> m e. CC ) |
| 39 |
38
|
ad3antrrr |
|- ( ( ( ( m e. Odd /\ 7 < m ) /\ p e. Prime ) /\ q e. Prime ) -> m e. CC ) |
| 40 |
|
3cn |
|- 3 e. CC |
| 41 |
40
|
a1i |
|- ( ( ( ( m e. Odd /\ 7 < m ) /\ p e. Prime ) /\ q e. Prime ) -> 3 e. CC ) |
| 42 |
|
prmz |
|- ( p e. Prime -> p e. ZZ ) |
| 43 |
|
prmz |
|- ( q e. Prime -> q e. ZZ ) |
| 44 |
|
zaddcl |
|- ( ( p e. ZZ /\ q e. ZZ ) -> ( p + q ) e. ZZ ) |
| 45 |
42 43 44
|
syl2an |
|- ( ( p e. Prime /\ q e. Prime ) -> ( p + q ) e. ZZ ) |
| 46 |
45
|
zcnd |
|- ( ( p e. Prime /\ q e. Prime ) -> ( p + q ) e. CC ) |
| 47 |
46
|
adantll |
|- ( ( ( ( m e. Odd /\ 7 < m ) /\ p e. Prime ) /\ q e. Prime ) -> ( p + q ) e. CC ) |
| 48 |
39 41 47
|
subadd2d |
|- ( ( ( ( m e. Odd /\ 7 < m ) /\ p e. Prime ) /\ q e. Prime ) -> ( ( m - 3 ) = ( p + q ) <-> ( ( p + q ) + 3 ) = m ) ) |
| 49 |
48
|
biimpa |
|- ( ( ( ( ( m e. Odd /\ 7 < m ) /\ p e. Prime ) /\ q e. Prime ) /\ ( m - 3 ) = ( p + q ) ) -> ( ( p + q ) + 3 ) = m ) |
| 50 |
49
|
eqcomd |
|- ( ( ( ( ( m e. Odd /\ 7 < m ) /\ p e. Prime ) /\ q e. Prime ) /\ ( m - 3 ) = ( p + q ) ) -> m = ( ( p + q ) + 3 ) ) |
| 51 |
50
|
3ad2antr3 |
|- ( ( ( ( ( m e. Odd /\ 7 < m ) /\ p e. Prime ) /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ ( m - 3 ) = ( p + q ) ) ) -> m = ( ( p + q ) + 3 ) ) |
| 52 |
37 51
|
jca |
|- ( ( ( ( ( m e. Odd /\ 7 < m ) /\ p e. Prime ) /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ ( m - 3 ) = ( p + q ) ) ) -> ( ( p e. Odd /\ q e. Odd /\ 3 e. Odd ) /\ m = ( ( p + q ) + 3 ) ) ) |
| 53 |
26 32 52
|
rspcedvd |
|- ( ( ( ( ( m e. Odd /\ 7 < m ) /\ p e. Prime ) /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ ( m - 3 ) = ( p + q ) ) ) -> E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ m = ( ( p + q ) + r ) ) ) |
| 54 |
53
|
ex |
|- ( ( ( ( m e. Odd /\ 7 < m ) /\ p e. Prime ) /\ q e. Prime ) -> ( ( p e. Odd /\ q e. Odd /\ ( m - 3 ) = ( p + q ) ) -> E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ m = ( ( p + q ) + r ) ) ) ) |
| 55 |
54
|
reximdva |
|- ( ( ( m e. Odd /\ 7 < m ) /\ p e. Prime ) -> ( E. q e. Prime ( p e. Odd /\ q e. Odd /\ ( m - 3 ) = ( p + q ) ) -> E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ m = ( ( p + q ) + r ) ) ) ) |
| 56 |
55
|
reximdva |
|- ( ( m e. Odd /\ 7 < m ) -> ( E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ ( m - 3 ) = ( p + q ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ m = ( ( p + q ) + r ) ) ) ) |
| 57 |
56 1
|
jctild |
|- ( ( m e. Odd /\ 7 < m ) -> ( E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ ( m - 3 ) = ( p + q ) ) -> ( m e. Odd /\ E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ m = ( ( p + q ) + r ) ) ) ) ) |
| 58 |
|
isgbo |
|- ( m e. GoldbachOdd <-> ( m e. Odd /\ E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ m = ( ( p + q ) + r ) ) ) ) |
| 59 |
57 58
|
imbitrrdi |
|- ( ( m e. Odd /\ 7 < m ) -> ( E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ ( m - 3 ) = ( p + q ) ) -> m e. GoldbachOdd ) ) |
| 60 |
59
|
adantld |
|- ( ( m e. Odd /\ 7 < m ) -> ( ( ( m - 3 ) e. Even /\ E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ ( m - 3 ) = ( p + q ) ) ) -> m e. GoldbachOdd ) ) |
| 61 |
24 60
|
biimtrid |
|- ( ( m e. Odd /\ 7 < m ) -> ( ( m - 3 ) e. GoldbachEven -> m e. GoldbachOdd ) ) |
| 62 |
9 23 61
|
3syld |
|- ( ( m e. Odd /\ 7 < m ) -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> m e. GoldbachOdd ) ) |
| 63 |
62
|
com12 |
|- ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( ( m e. Odd /\ 7 < m ) -> m e. GoldbachOdd ) ) |
| 64 |
63
|
expd |
|- ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( m e. Odd -> ( 7 < m -> m e. GoldbachOdd ) ) ) |
| 65 |
64
|
ralrimiv |
|- ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> A. m e. Odd ( 7 < m -> m e. GoldbachOdd ) ) |