Step |
Hyp |
Ref |
Expression |
1 |
|
oddz |
|- ( m e. Odd -> m e. ZZ ) |
2 |
|
5nn |
|- 5 e. NN |
3 |
2
|
nnzi |
|- 5 e. ZZ |
4 |
|
zltp1le |
|- ( ( 5 e. ZZ /\ m e. ZZ ) -> ( 5 < m <-> ( 5 + 1 ) <_ m ) ) |
5 |
3 4
|
mpan |
|- ( m e. ZZ -> ( 5 < m <-> ( 5 + 1 ) <_ m ) ) |
6 |
|
5p1e6 |
|- ( 5 + 1 ) = 6 |
7 |
6
|
breq1i |
|- ( ( 5 + 1 ) <_ m <-> 6 <_ m ) |
8 |
|
6re |
|- 6 e. RR |
9 |
8
|
a1i |
|- ( m e. ZZ -> 6 e. RR ) |
10 |
|
zre |
|- ( m e. ZZ -> m e. RR ) |
11 |
9 10
|
leloed |
|- ( m e. ZZ -> ( 6 <_ m <-> ( 6 < m \/ 6 = m ) ) ) |
12 |
7 11
|
syl5bb |
|- ( m e. ZZ -> ( ( 5 + 1 ) <_ m <-> ( 6 < m \/ 6 = m ) ) ) |
13 |
|
6nn |
|- 6 e. NN |
14 |
13
|
nnzi |
|- 6 e. ZZ |
15 |
|
zltp1le |
|- ( ( 6 e. ZZ /\ m e. ZZ ) -> ( 6 < m <-> ( 6 + 1 ) <_ m ) ) |
16 |
14 15
|
mpan |
|- ( m e. ZZ -> ( 6 < m <-> ( 6 + 1 ) <_ m ) ) |
17 |
|
6p1e7 |
|- ( 6 + 1 ) = 7 |
18 |
17
|
breq1i |
|- ( ( 6 + 1 ) <_ m <-> 7 <_ m ) |
19 |
|
7re |
|- 7 e. RR |
20 |
19
|
a1i |
|- ( m e. ZZ -> 7 e. RR ) |
21 |
20 10
|
leloed |
|- ( m e. ZZ -> ( 7 <_ m <-> ( 7 < m \/ 7 = m ) ) ) |
22 |
18 21
|
syl5bb |
|- ( m e. ZZ -> ( ( 6 + 1 ) <_ m <-> ( 7 < m \/ 7 = m ) ) ) |
23 |
|
simpr |
|- ( ( ( 7 < m /\ m e. ZZ ) /\ m e. Odd ) -> m e. Odd ) |
24 |
|
3odd |
|- 3 e. Odd |
25 |
23 24
|
jctir |
|- ( ( ( 7 < m /\ m e. ZZ ) /\ m e. Odd ) -> ( m e. Odd /\ 3 e. Odd ) ) |
26 |
|
omoeALTV |
|- ( ( m e. Odd /\ 3 e. Odd ) -> ( m - 3 ) e. Even ) |
27 |
|
breq2 |
|- ( n = ( m - 3 ) -> ( 4 < n <-> 4 < ( m - 3 ) ) ) |
28 |
|
eleq1 |
|- ( n = ( m - 3 ) -> ( n e. GoldbachEven <-> ( m - 3 ) e. GoldbachEven ) ) |
29 |
27 28
|
imbi12d |
|- ( n = ( m - 3 ) -> ( ( 4 < n -> n e. GoldbachEven ) <-> ( 4 < ( m - 3 ) -> ( m - 3 ) e. GoldbachEven ) ) ) |
30 |
29
|
rspcv |
|- ( ( m - 3 ) e. Even -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( 4 < ( m - 3 ) -> ( m - 3 ) e. GoldbachEven ) ) ) |
31 |
25 26 30
|
3syl |
|- ( ( ( 7 < m /\ m e. ZZ ) /\ m e. Odd ) -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( 4 < ( m - 3 ) -> ( m - 3 ) e. GoldbachEven ) ) ) |
32 |
|
4p3e7 |
|- ( 4 + 3 ) = 7 |
33 |
32
|
eqcomi |
|- 7 = ( 4 + 3 ) |
34 |
33
|
breq1i |
|- ( 7 < m <-> ( 4 + 3 ) < m ) |
35 |
|
4re |
|- 4 e. RR |
36 |
35
|
a1i |
|- ( m e. ZZ -> 4 e. RR ) |
37 |
|
3re |
|- 3 e. RR |
38 |
37
|
a1i |
|- ( m e. ZZ -> 3 e. RR ) |
39 |
|
ltaddsub |
|- ( ( 4 e. RR /\ 3 e. RR /\ m e. RR ) -> ( ( 4 + 3 ) < m <-> 4 < ( m - 3 ) ) ) |
40 |
39
|
biimpd |
|- ( ( 4 e. RR /\ 3 e. RR /\ m e. RR ) -> ( ( 4 + 3 ) < m -> 4 < ( m - 3 ) ) ) |
41 |
36 38 10 40
|
syl3anc |
|- ( m e. ZZ -> ( ( 4 + 3 ) < m -> 4 < ( m - 3 ) ) ) |
42 |
34 41
|
syl5bi |
|- ( m e. ZZ -> ( 7 < m -> 4 < ( m - 3 ) ) ) |
43 |
42
|
impcom |
|- ( ( 7 < m /\ m e. ZZ ) -> 4 < ( m - 3 ) ) |
44 |
43
|
adantr |
|- ( ( ( 7 < m /\ m e. ZZ ) /\ m e. Odd ) -> 4 < ( m - 3 ) ) |
45 |
|
pm2.27 |
|- ( 4 < ( m - 3 ) -> ( ( 4 < ( m - 3 ) -> ( m - 3 ) e. GoldbachEven ) -> ( m - 3 ) e. GoldbachEven ) ) |
46 |
44 45
|
syl |
|- ( ( ( 7 < m /\ m e. ZZ ) /\ m e. Odd ) -> ( ( 4 < ( m - 3 ) -> ( m - 3 ) e. GoldbachEven ) -> ( m - 3 ) e. GoldbachEven ) ) |
47 |
|
isgbe |
|- ( ( m - 3 ) e. GoldbachEven <-> ( ( m - 3 ) e. Even /\ E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ ( m - 3 ) = ( p + q ) ) ) ) |
48 |
|
3prm |
|- 3 e. Prime |
49 |
48
|
a1i |
|- ( m e. ZZ -> 3 e. Prime ) |
50 |
|
zcn |
|- ( m e. ZZ -> m e. CC ) |
51 |
|
3cn |
|- 3 e. CC |
52 |
50 51
|
jctir |
|- ( m e. ZZ -> ( m e. CC /\ 3 e. CC ) ) |
53 |
|
npcan |
|- ( ( m e. CC /\ 3 e. CC ) -> ( ( m - 3 ) + 3 ) = m ) |
54 |
53
|
eqcomd |
|- ( ( m e. CC /\ 3 e. CC ) -> m = ( ( m - 3 ) + 3 ) ) |
55 |
52 54
|
syl |
|- ( m e. ZZ -> m = ( ( m - 3 ) + 3 ) ) |
56 |
|
oveq2 |
|- ( 3 = r -> ( ( m - 3 ) + 3 ) = ( ( m - 3 ) + r ) ) |
57 |
56
|
eqcoms |
|- ( r = 3 -> ( ( m - 3 ) + 3 ) = ( ( m - 3 ) + r ) ) |
58 |
55 57
|
sylan9eq |
|- ( ( m e. ZZ /\ r = 3 ) -> m = ( ( m - 3 ) + r ) ) |
59 |
49 58
|
rspcedeq2vd |
|- ( m e. ZZ -> E. r e. Prime m = ( ( m - 3 ) + r ) ) |
60 |
|
oveq1 |
|- ( ( m - 3 ) = ( p + q ) -> ( ( m - 3 ) + r ) = ( ( p + q ) + r ) ) |
61 |
60
|
eqeq2d |
|- ( ( m - 3 ) = ( p + q ) -> ( m = ( ( m - 3 ) + r ) <-> m = ( ( p + q ) + r ) ) ) |
62 |
61
|
rexbidv |
|- ( ( m - 3 ) = ( p + q ) -> ( E. r e. Prime m = ( ( m - 3 ) + r ) <-> E. r e. Prime m = ( ( p + q ) + r ) ) ) |
63 |
59 62
|
syl5ib |
|- ( ( m - 3 ) = ( p + q ) -> ( m e. ZZ -> E. r e. Prime m = ( ( p + q ) + r ) ) ) |
64 |
63
|
3ad2ant3 |
|- ( ( p e. Odd /\ q e. Odd /\ ( m - 3 ) = ( p + q ) ) -> ( m e. ZZ -> E. r e. Prime m = ( ( p + q ) + r ) ) ) |
65 |
64
|
com12 |
|- ( m e. ZZ -> ( ( p e. Odd /\ q e. Odd /\ ( m - 3 ) = ( p + q ) ) -> E. r e. Prime m = ( ( p + q ) + r ) ) ) |
66 |
65
|
ad4antlr |
|- ( ( ( ( ( 7 < m /\ m e. ZZ ) /\ m e. Odd ) /\ p e. Prime ) /\ q e. Prime ) -> ( ( p e. Odd /\ q e. Odd /\ ( m - 3 ) = ( p + q ) ) -> E. r e. Prime m = ( ( p + q ) + r ) ) ) |
67 |
66
|
reximdva |
|- ( ( ( ( 7 < m /\ m e. ZZ ) /\ m e. Odd ) /\ p e. Prime ) -> ( E. q e. Prime ( p e. Odd /\ q e. Odd /\ ( m - 3 ) = ( p + q ) ) -> E. q e. Prime E. r e. Prime m = ( ( p + q ) + r ) ) ) |
68 |
67
|
reximdva |
|- ( ( ( 7 < m /\ m e. ZZ ) /\ m e. Odd ) -> ( E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ ( m - 3 ) = ( p + q ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime m = ( ( p + q ) + r ) ) ) |
69 |
68 23
|
jctild |
|- ( ( ( 7 < m /\ m e. ZZ ) /\ m e. Odd ) -> ( E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ ( m - 3 ) = ( p + q ) ) -> ( m e. Odd /\ E. p e. Prime E. q e. Prime E. r e. Prime m = ( ( p + q ) + r ) ) ) ) |
70 |
|
isgbow |
|- ( m e. GoldbachOddW <-> ( m e. Odd /\ E. p e. Prime E. q e. Prime E. r e. Prime m = ( ( p + q ) + r ) ) ) |
71 |
69 70
|
syl6ibr |
|- ( ( ( 7 < m /\ m e. ZZ ) /\ m e. Odd ) -> ( E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ ( m - 3 ) = ( p + q ) ) -> m e. GoldbachOddW ) ) |
72 |
71
|
adantld |
|- ( ( ( 7 < m /\ m e. ZZ ) /\ m e. Odd ) -> ( ( ( m - 3 ) e. Even /\ E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ ( m - 3 ) = ( p + q ) ) ) -> m e. GoldbachOddW ) ) |
73 |
47 72
|
syl5bi |
|- ( ( ( 7 < m /\ m e. ZZ ) /\ m e. Odd ) -> ( ( m - 3 ) e. GoldbachEven -> m e. GoldbachOddW ) ) |
74 |
31 46 73
|
3syld |
|- ( ( ( 7 < m /\ m e. ZZ ) /\ m e. Odd ) -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> m e. GoldbachOddW ) ) |
75 |
74
|
ex |
|- ( ( 7 < m /\ m e. ZZ ) -> ( m e. Odd -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> m e. GoldbachOddW ) ) ) |
76 |
75
|
com23 |
|- ( ( 7 < m /\ m e. ZZ ) -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( m e. Odd -> m e. GoldbachOddW ) ) ) |
77 |
76
|
ex |
|- ( 7 < m -> ( m e. ZZ -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( m e. Odd -> m e. GoldbachOddW ) ) ) ) |
78 |
|
7gbow |
|- 7 e. GoldbachOddW |
79 |
|
eleq1 |
|- ( 7 = m -> ( 7 e. GoldbachOddW <-> m e. GoldbachOddW ) ) |
80 |
78 79
|
mpbii |
|- ( 7 = m -> m e. GoldbachOddW ) |
81 |
80
|
a1d |
|- ( 7 = m -> ( m e. Odd -> m e. GoldbachOddW ) ) |
82 |
81
|
a1d |
|- ( 7 = m -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( m e. Odd -> m e. GoldbachOddW ) ) ) |
83 |
82
|
a1d |
|- ( 7 = m -> ( m e. ZZ -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( m e. Odd -> m e. GoldbachOddW ) ) ) ) |
84 |
77 83
|
jaoi |
|- ( ( 7 < m \/ 7 = m ) -> ( m e. ZZ -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( m e. Odd -> m e. GoldbachOddW ) ) ) ) |
85 |
84
|
com12 |
|- ( m e. ZZ -> ( ( 7 < m \/ 7 = m ) -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( m e. Odd -> m e. GoldbachOddW ) ) ) ) |
86 |
22 85
|
sylbid |
|- ( m e. ZZ -> ( ( 6 + 1 ) <_ m -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( m e. Odd -> m e. GoldbachOddW ) ) ) ) |
87 |
16 86
|
sylbid |
|- ( m e. ZZ -> ( 6 < m -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( m e. Odd -> m e. GoldbachOddW ) ) ) ) |
88 |
87
|
com12 |
|- ( 6 < m -> ( m e. ZZ -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( m e. Odd -> m e. GoldbachOddW ) ) ) ) |
89 |
|
eleq1 |
|- ( 6 = m -> ( 6 e. Odd <-> m e. Odd ) ) |
90 |
|
6even |
|- 6 e. Even |
91 |
|
evennodd |
|- ( 6 e. Even -> -. 6 e. Odd ) |
92 |
91
|
pm2.21d |
|- ( 6 e. Even -> ( 6 e. Odd -> m e. GoldbachOddW ) ) |
93 |
90 92
|
ax-mp |
|- ( 6 e. Odd -> m e. GoldbachOddW ) |
94 |
89 93
|
syl6bir |
|- ( 6 = m -> ( m e. Odd -> m e. GoldbachOddW ) ) |
95 |
94
|
a1d |
|- ( 6 = m -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( m e. Odd -> m e. GoldbachOddW ) ) ) |
96 |
95
|
a1d |
|- ( 6 = m -> ( m e. ZZ -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( m e. Odd -> m e. GoldbachOddW ) ) ) ) |
97 |
88 96
|
jaoi |
|- ( ( 6 < m \/ 6 = m ) -> ( m e. ZZ -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( m e. Odd -> m e. GoldbachOddW ) ) ) ) |
98 |
97
|
com12 |
|- ( m e. ZZ -> ( ( 6 < m \/ 6 = m ) -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( m e. Odd -> m e. GoldbachOddW ) ) ) ) |
99 |
12 98
|
sylbid |
|- ( m e. ZZ -> ( ( 5 + 1 ) <_ m -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( m e. Odd -> m e. GoldbachOddW ) ) ) ) |
100 |
5 99
|
sylbid |
|- ( m e. ZZ -> ( 5 < m -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( m e. Odd -> m e. GoldbachOddW ) ) ) ) |
101 |
100
|
com24 |
|- ( m e. ZZ -> ( m e. Odd -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( 5 < m -> m e. GoldbachOddW ) ) ) ) |
102 |
1 101
|
mpcom |
|- ( m e. Odd -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( 5 < m -> m e. GoldbachOddW ) ) ) |
103 |
102
|
impcom |
|- ( ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) /\ m e. Odd ) -> ( 5 < m -> m e. GoldbachOddW ) ) |
104 |
103
|
ralrimiva |
|- ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> A. m e. Odd ( 5 < m -> m e. GoldbachOddW ) ) |