Metamath Proof Explorer


Theorem sbhb

Description: Two ways of expressing " x is (effectively) not free in ph ". Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 29-May-2009) (New usage is discouraged.)

Ref Expression
Assertion sbhb
|- ( ( ph -> A. x ph ) <-> A. y ( ph -> [ y / x ] ph ) )

Proof

Step Hyp Ref Expression
1 nfv
 |-  F/ y ph
2 1 sb8
 |-  ( A. x ph <-> A. y [ y / x ] ph )
3 2 imbi2i
 |-  ( ( ph -> A. x ph ) <-> ( ph -> A. y [ y / x ] ph ) )
4 19.21v
 |-  ( A. y ( ph -> [ y / x ] ph ) <-> ( ph -> A. y [ y / x ] ph ) )
5 3 4 bitr4i
 |-  ( ( ph -> A. x ph ) <-> A. y ( ph -> [ y / x ] ph ) )