Description: Two ways of expressing " x is (effectively) not free in ph ". Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 29-May-2009) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | sbhb | |- ( ( ph -> A. x ph ) <-> A. y ( ph -> [ y / x ] ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv | |- F/ y ph |
|
2 | 1 | sb8 | |- ( A. x ph <-> A. y [ y / x ] ph ) |
3 | 2 | imbi2i | |- ( ( ph -> A. x ph ) <-> ( ph -> A. y [ y / x ] ph ) ) |
4 | 19.21v | |- ( A. y ( ph -> [ y / x ] ph ) <-> ( ph -> A. y [ y / x ] ph ) ) |
|
5 | 3 4 | bitr4i | |- ( ( ph -> A. x ph ) <-> A. y ( ph -> [ y / x ] ph ) ) |