Description: Introduce an explicit substitution into an implicit substitution hypothesis. See also csbhypf . (Contributed by Raph Levien, 10-Apr-2004) (Proof shortened by Wolf Lammen, 25-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sbhypf.1 | |- F/ x ps |
|
| sbhypf.2 | |- ( x = A -> ( ph <-> ps ) ) |
||
| Assertion | sbhypf | |- ( y = A -> ( [ y / x ] ph <-> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbhypf.1 | |- F/ x ps |
|
| 2 | sbhypf.2 | |- ( x = A -> ( ph <-> ps ) ) |
|
| 3 | 2 | sbimi | |- ( [ y / x ] x = A -> [ y / x ] ( ph <-> ps ) ) |
| 4 | eqsb1 | |- ( [ y / x ] x = A <-> y = A ) |
|
| 5 | 1 | sbf | |- ( [ y / x ] ps <-> ps ) |
| 6 | 5 | sblbis | |- ( [ y / x ] ( ph <-> ps ) <-> ( [ y / x ] ph <-> ps ) ) |
| 7 | 3 4 6 | 3imtr3i | |- ( y = A -> ( [ y / x ] ph <-> ps ) ) |