Metamath Proof Explorer


Theorem sbhypf

Description: Introduce an explicit substitution into an implicit substitution hypothesis. See also csbhypf . (Contributed by Raph Levien, 10-Apr-2004) (Proof shortened by Wolf Lammen, 25-Jan-2025)

Ref Expression
Hypotheses sbhypf.1
|- F/ x ps
sbhypf.2
|- ( x = A -> ( ph <-> ps ) )
Assertion sbhypf
|- ( y = A -> ( [ y / x ] ph <-> ps ) )

Proof

Step Hyp Ref Expression
1 sbhypf.1
 |-  F/ x ps
2 sbhypf.2
 |-  ( x = A -> ( ph <-> ps ) )
3 2 sbimi
 |-  ( [ y / x ] x = A -> [ y / x ] ( ph <-> ps ) )
4 eqsb1
 |-  ( [ y / x ] x = A <-> y = A )
5 1 sbf
 |-  ( [ y / x ] ps <-> ps )
6 5 sblbis
 |-  ( [ y / x ] ( ph <-> ps ) <-> ( [ y / x ] ph <-> ps ) )
7 3 4 6 3imtr3i
 |-  ( y = A -> ( [ y / x ] ph <-> ps ) )