| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbhypf.1 |
|- F/ x ps |
| 2 |
|
sbhypf.2 |
|- ( x = A -> ( ph <-> ps ) ) |
| 3 |
|
eqeq1 |
|- ( x = y -> ( x = A <-> y = A ) ) |
| 4 |
3
|
equsexvw |
|- ( E. x ( x = y /\ x = A ) <-> y = A ) |
| 5 |
|
nfs1v |
|- F/ x [ y / x ] ph |
| 6 |
5 1
|
nfbi |
|- F/ x ( [ y / x ] ph <-> ps ) |
| 7 |
|
sbequ12 |
|- ( x = y -> ( ph <-> [ y / x ] ph ) ) |
| 8 |
7
|
bicomd |
|- ( x = y -> ( [ y / x ] ph <-> ph ) ) |
| 9 |
8 2
|
sylan9bb |
|- ( ( x = y /\ x = A ) -> ( [ y / x ] ph <-> ps ) ) |
| 10 |
6 9
|
exlimi |
|- ( E. x ( x = y /\ x = A ) -> ( [ y / x ] ph <-> ps ) ) |
| 11 |
4 10
|
sylbir |
|- ( y = A -> ( [ y / x ] ph <-> ps ) ) |