| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-sb |
|- ( [ y / x ] ( ph -> ps ) <-> A. z ( z = y -> A. x ( x = z -> ( ph -> ps ) ) ) ) |
| 2 |
|
ax-2 |
|- ( ( x = z -> ( ph -> ps ) ) -> ( ( x = z -> ph ) -> ( x = z -> ps ) ) ) |
| 3 |
2
|
al2imi |
|- ( A. x ( x = z -> ( ph -> ps ) ) -> ( A. x ( x = z -> ph ) -> A. x ( x = z -> ps ) ) ) |
| 4 |
3
|
imim3i |
|- ( ( z = y -> A. x ( x = z -> ( ph -> ps ) ) ) -> ( ( z = y -> A. x ( x = z -> ph ) ) -> ( z = y -> A. x ( x = z -> ps ) ) ) ) |
| 5 |
4
|
al2imi |
|- ( A. z ( z = y -> A. x ( x = z -> ( ph -> ps ) ) ) -> ( A. z ( z = y -> A. x ( x = z -> ph ) ) -> A. z ( z = y -> A. x ( x = z -> ps ) ) ) ) |
| 6 |
|
df-sb |
|- ( [ y / x ] ph <-> A. z ( z = y -> A. x ( x = z -> ph ) ) ) |
| 7 |
|
df-sb |
|- ( [ y / x ] ps <-> A. z ( z = y -> A. x ( x = z -> ps ) ) ) |
| 8 |
5 6 7
|
3imtr4g |
|- ( A. z ( z = y -> A. x ( x = z -> ( ph -> ps ) ) ) -> ( [ y / x ] ph -> [ y / x ] ps ) ) |
| 9 |
1 8
|
sylbi |
|- ( [ y / x ] ( ph -> ps ) -> ( [ y / x ] ph -> [ y / x ] ps ) ) |