Metamath Proof Explorer


Theorem sbi2

Description: Introduction of implication into substitution. (Contributed by NM, 14-May-1993)

Ref Expression
Assertion sbi2
|- ( ( [ y / x ] ph -> [ y / x ] ps ) -> [ y / x ] ( ph -> ps ) )

Proof

Step Hyp Ref Expression
1 sbn
 |-  ( [ y / x ] -. ph <-> -. [ y / x ] ph )
2 pm2.21
 |-  ( -. ph -> ( ph -> ps ) )
3 2 sbimi
 |-  ( [ y / x ] -. ph -> [ y / x ] ( ph -> ps ) )
4 1 3 sylbir
 |-  ( -. [ y / x ] ph -> [ y / x ] ( ph -> ps ) )
5 ax-1
 |-  ( ps -> ( ph -> ps ) )
6 5 sbimi
 |-  ( [ y / x ] ps -> [ y / x ] ( ph -> ps ) )
7 4 6 ja
 |-  ( ( [ y / x ] ph -> [ y / x ] ps ) -> [ y / x ] ( ph -> ps ) )