Description: Introduction of implication into substitution. (Contributed by NM, 14-May-1993)
Ref | Expression | ||
---|---|---|---|
Assertion | sbi2 | |- ( ( [ y / x ] ph -> [ y / x ] ps ) -> [ y / x ] ( ph -> ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbn | |- ( [ y / x ] -. ph <-> -. [ y / x ] ph ) |
|
2 | pm2.21 | |- ( -. ph -> ( ph -> ps ) ) |
|
3 | 2 | sbimi | |- ( [ y / x ] -. ph -> [ y / x ] ( ph -> ps ) ) |
4 | 1 3 | sylbir | |- ( -. [ y / x ] ph -> [ y / x ] ( ph -> ps ) ) |
5 | ax-1 | |- ( ps -> ( ph -> ps ) ) |
|
6 | 5 | sbimi | |- ( [ y / x ] ps -> [ y / x ] ( ph -> ps ) ) |
7 | 4 6 | ja | |- ( ( [ y / x ] ph -> [ y / x ] ps ) -> [ y / x ] ( ph -> ps ) ) |