Step |
Hyp |
Ref |
Expression |
1 |
|
sbiedw.1 |
|- F/ x ph |
2 |
|
sbiedw.2 |
|- ( ph -> F/ x ch ) |
3 |
|
sbiedw.3 |
|- ( ph -> ( x = y -> ( ps <-> ch ) ) ) |
4 |
1
|
sbrim |
|- ( [ y / x ] ( ph -> ps ) <-> ( ph -> [ y / x ] ps ) ) |
5 |
1 2
|
nfim1 |
|- F/ x ( ph -> ch ) |
6 |
3
|
com12 |
|- ( x = y -> ( ph -> ( ps <-> ch ) ) ) |
7 |
6
|
pm5.74d |
|- ( x = y -> ( ( ph -> ps ) <-> ( ph -> ch ) ) ) |
8 |
5 7
|
sbiev |
|- ( [ y / x ] ( ph -> ps ) <-> ( ph -> ch ) ) |
9 |
4 8
|
bitr3i |
|- ( ( ph -> [ y / x ] ps ) <-> ( ph -> ch ) ) |
10 |
9
|
pm5.74ri |
|- ( ph -> ( [ y / x ] ps <-> ch ) ) |