Step |
Hyp |
Ref |
Expression |
1 |
|
sbievg.1 |
|- F/ y ph |
2 |
|
sbievg.2 |
|- F/ x ps |
3 |
|
sbievg.3 |
|- ( x = y -> ( ph <-> ps ) ) |
4 |
|
nfv |
|- F/ y x = w |
5 |
4 1
|
nfim |
|- F/ y ( x = w -> ph ) |
6 |
|
nfv |
|- F/ x y = w |
7 |
6 2
|
nfim |
|- F/ x ( y = w -> ps ) |
8 |
|
equequ1 |
|- ( x = y -> ( x = w <-> y = w ) ) |
9 |
8 3
|
imbi12d |
|- ( x = y -> ( ( x = w -> ph ) <-> ( y = w -> ps ) ) ) |
10 |
5 7 9
|
cbvalv1 |
|- ( A. x ( x = w -> ph ) <-> A. y ( y = w -> ps ) ) |
11 |
10
|
imbi2i |
|- ( ( w = z -> A. x ( x = w -> ph ) ) <-> ( w = z -> A. y ( y = w -> ps ) ) ) |
12 |
11
|
albii |
|- ( A. w ( w = z -> A. x ( x = w -> ph ) ) <-> A. w ( w = z -> A. y ( y = w -> ps ) ) ) |
13 |
|
df-sb |
|- ( [ z / x ] ph <-> A. w ( w = z -> A. x ( x = w -> ph ) ) ) |
14 |
|
df-sb |
|- ( [ z / y ] ps <-> A. w ( w = z -> A. y ( y = w -> ps ) ) ) |
15 |
12 13 14
|
3bitr4i |
|- ( [ z / x ] ph <-> [ z / y ] ps ) |