Description: Implication inside and outside of a substitution are equivalent. (Contributed by NM, 14-May-1993)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbim | |- ( [ y / x ] ( ph -> ps ) <-> ( [ y / x ] ph -> [ y / x ] ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbi1 | |- ( [ y / x ] ( ph -> ps ) -> ( [ y / x ] ph -> [ y / x ] ps ) ) |
|
| 2 | sbi2 | |- ( ( [ y / x ] ph -> [ y / x ] ps ) -> [ y / x ] ( ph -> ps ) ) |
|
| 3 | 1 2 | impbii | |- ( [ y / x ] ( ph -> ps ) <-> ( [ y / x ] ph -> [ y / x ] ps ) ) |