Metamath Proof Explorer


Theorem sbim

Description: Implication inside and outside of a substitution are equivalent. (Contributed by NM, 14-May-1993)

Ref Expression
Assertion sbim
|- ( [ y / x ] ( ph -> ps ) <-> ( [ y / x ] ph -> [ y / x ] ps ) )

Proof

Step Hyp Ref Expression
1 sbi1
 |-  ( [ y / x ] ( ph -> ps ) -> ( [ y / x ] ph -> [ y / x ] ps ) )
2 sbi2
 |-  ( ( [ y / x ] ph -> [ y / x ] ps ) -> [ y / x ] ( ph -> ps ) )
3 1 2 impbii
 |-  ( [ y / x ] ( ph -> ps ) <-> ( [ y / x ] ph -> [ y / x ] ps ) )