Description: Implication inside and outside of a substitution are equivalent. (Contributed by NM, 14-May-1993)
Ref | Expression | ||
---|---|---|---|
Assertion | sbim | |- ( [ y / x ] ( ph -> ps ) <-> ( [ y / x ] ph -> [ y / x ] ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbi1 | |- ( [ y / x ] ( ph -> ps ) -> ( [ y / x ] ph -> [ y / x ] ps ) ) |
|
2 | sbi2 | |- ( ( [ y / x ] ph -> [ y / x ] ps ) -> [ y / x ] ( ph -> ps ) ) |
|
3 | 1 2 | impbii | |- ( [ y / x ] ( ph -> ps ) <-> ( [ y / x ] ph -> [ y / x ] ps ) ) |