Description: Deduction substituting both sides of an implication. (Contributed by Wolf Lammen, 24-Nov-2022) Revise df-sb . (Revised by Steven Nguyen, 9-Jul-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sbimd.1 | |- F/ x ph |
|
sbimd.2 | |- ( ph -> ( ps -> ch ) ) |
||
Assertion | sbimd | |- ( ph -> ( [ y / x ] ps -> [ y / x ] ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbimd.1 | |- F/ x ph |
|
2 | sbimd.2 | |- ( ph -> ( ps -> ch ) ) |
|
3 | 1 2 | alrimi | |- ( ph -> A. x ( ps -> ch ) ) |
4 | spsbim | |- ( A. x ( ps -> ch ) -> ( [ y / x ] ps -> [ y / x ] ch ) ) |
|
5 | 3 4 | syl | |- ( ph -> ( [ y / x ] ps -> [ y / x ] ch ) ) |