Metamath Proof Explorer


Theorem sbimd

Description: Deduction substituting both sides of an implication. (Contributed by Wolf Lammen, 24-Nov-2022) Revise df-sb . (Revised by Steven Nguyen, 9-Jul-2023)

Ref Expression
Hypotheses sbimd.1
|- F/ x ph
sbimd.2
|- ( ph -> ( ps -> ch ) )
Assertion sbimd
|- ( ph -> ( [ y / x ] ps -> [ y / x ] ch ) )

Proof

Step Hyp Ref Expression
1 sbimd.1
 |-  F/ x ph
2 sbimd.2
 |-  ( ph -> ( ps -> ch ) )
3 1 2 alrimi
 |-  ( ph -> A. x ( ps -> ch ) )
4 spsbim
 |-  ( A. x ( ps -> ch ) -> ( [ y / x ] ps -> [ y / x ] ch ) )
5 3 4 syl
 |-  ( ph -> ( [ y / x ] ps -> [ y / x ] ch ) )