Step |
Hyp |
Ref |
Expression |
1 |
|
eu6 |
|- ( E! x ph <-> E. y A. x ( ph <-> x = y ) ) |
2 |
1
|
biimpi |
|- ( E! x ph -> E. y A. x ( ph <-> x = y ) ) |
3 |
|
iota4 |
|- ( E! x ph -> [. ( iota x ph ) / x ]. ph ) |
4 |
|
iotaval |
|- ( A. x ( ph <-> x = y ) -> ( iota x ph ) = y ) |
5 |
4
|
eqcomd |
|- ( A. x ( ph <-> x = y ) -> y = ( iota x ph ) ) |
6 |
|
spsbim |
|- ( A. x ( ph -> ps ) -> ( [ y / x ] ph -> [ y / x ] ps ) ) |
7 |
|
sbsbc |
|- ( [ y / x ] ph <-> [. y / x ]. ph ) |
8 |
|
sbsbc |
|- ( [ y / x ] ps <-> [. y / x ]. ps ) |
9 |
6 7 8
|
3imtr3g |
|- ( A. x ( ph -> ps ) -> ( [. y / x ]. ph -> [. y / x ]. ps ) ) |
10 |
|
dfsbcq |
|- ( y = ( iota x ph ) -> ( [. y / x ]. ph <-> [. ( iota x ph ) / x ]. ph ) ) |
11 |
|
dfsbcq |
|- ( y = ( iota x ph ) -> ( [. y / x ]. ps <-> [. ( iota x ph ) / x ]. ps ) ) |
12 |
10 11
|
imbi12d |
|- ( y = ( iota x ph ) -> ( ( [. y / x ]. ph -> [. y / x ]. ps ) <-> ( [. ( iota x ph ) / x ]. ph -> [. ( iota x ph ) / x ]. ps ) ) ) |
13 |
9 12
|
syl5ib |
|- ( y = ( iota x ph ) -> ( A. x ( ph -> ps ) -> ( [. ( iota x ph ) / x ]. ph -> [. ( iota x ph ) / x ]. ps ) ) ) |
14 |
13
|
com23 |
|- ( y = ( iota x ph ) -> ( [. ( iota x ph ) / x ]. ph -> ( A. x ( ph -> ps ) -> [. ( iota x ph ) / x ]. ps ) ) ) |
15 |
5 14
|
syl |
|- ( A. x ( ph <-> x = y ) -> ( [. ( iota x ph ) / x ]. ph -> ( A. x ( ph -> ps ) -> [. ( iota x ph ) / x ]. ps ) ) ) |
16 |
15
|
exlimiv |
|- ( E. y A. x ( ph <-> x = y ) -> ( [. ( iota x ph ) / x ]. ph -> ( A. x ( ph -> ps ) -> [. ( iota x ph ) / x ]. ps ) ) ) |
17 |
2 3 16
|
sylc |
|- ( E! x ph -> ( A. x ( ph -> ps ) -> [. ( iota x ph ) / x ]. ps ) ) |
18 |
|
iotaexeu |
|- ( E! x ph -> ( iota x ph ) e. _V ) |
19 |
10 11
|
anbi12d |
|- ( y = ( iota x ph ) -> ( ( [. y / x ]. ph /\ [. y / x ]. ps ) <-> ( [. ( iota x ph ) / x ]. ph /\ [. ( iota x ph ) / x ]. ps ) ) ) |
20 |
19
|
imbi1d |
|- ( y = ( iota x ph ) -> ( ( ( [. y / x ]. ph /\ [. y / x ]. ps ) -> E. x ( ph /\ ps ) ) <-> ( ( [. ( iota x ph ) / x ]. ph /\ [. ( iota x ph ) / x ]. ps ) -> E. x ( ph /\ ps ) ) ) ) |
21 |
|
sbcan |
|- ( [. y / x ]. ( ph /\ ps ) <-> ( [. y / x ]. ph /\ [. y / x ]. ps ) ) |
22 |
|
spesbc |
|- ( [. y / x ]. ( ph /\ ps ) -> E. x ( ph /\ ps ) ) |
23 |
21 22
|
sylbir |
|- ( ( [. y / x ]. ph /\ [. y / x ]. ps ) -> E. x ( ph /\ ps ) ) |
24 |
20 23
|
vtoclg |
|- ( ( iota x ph ) e. _V -> ( ( [. ( iota x ph ) / x ]. ph /\ [. ( iota x ph ) / x ]. ps ) -> E. x ( ph /\ ps ) ) ) |
25 |
24
|
expd |
|- ( ( iota x ph ) e. _V -> ( [. ( iota x ph ) / x ]. ph -> ( [. ( iota x ph ) / x ]. ps -> E. x ( ph /\ ps ) ) ) ) |
26 |
18 3 25
|
sylc |
|- ( E! x ph -> ( [. ( iota x ph ) / x ]. ps -> E. x ( ph /\ ps ) ) ) |
27 |
26
|
anc2li |
|- ( E! x ph -> ( [. ( iota x ph ) / x ]. ps -> ( E! x ph /\ E. x ( ph /\ ps ) ) ) ) |
28 |
|
eupicka |
|- ( ( E! x ph /\ E. x ( ph /\ ps ) ) -> A. x ( ph -> ps ) ) |
29 |
27 28
|
syl6 |
|- ( E! x ph -> ( [. ( iota x ph ) / x ]. ps -> A. x ( ph -> ps ) ) ) |
30 |
17 29
|
impbid |
|- ( E! x ph -> ( A. x ( ph -> ps ) <-> [. ( iota x ph ) / x ]. ps ) ) |