Description: Introduce left biconditional inside of a substitution. (Contributed by NM, 19-Aug-1993)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sblbis.1 | |- ( [ y / x ] ph <-> ps ) |
|
| Assertion | sblbis | |- ( [ y / x ] ( ch <-> ph ) <-> ( [ y / x ] ch <-> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sblbis.1 | |- ( [ y / x ] ph <-> ps ) |
|
| 2 | sbbi | |- ( [ y / x ] ( ch <-> ph ) <-> ( [ y / x ] ch <-> [ y / x ] ph ) ) |
|
| 3 | 1 | bibi2i | |- ( ( [ y / x ] ch <-> [ y / x ] ph ) <-> ( [ y / x ] ch <-> ps ) ) |
| 4 | 2 3 | bitri | |- ( [ y / x ] ( ch <-> ph ) <-> ( [ y / x ] ch <-> ps ) ) |