Metamath Proof Explorer


Theorem sblbis

Description: Introduce left biconditional inside of a substitution. (Contributed by NM, 19-Aug-1993)

Ref Expression
Hypothesis sblbis.1
|- ( [ y / x ] ph <-> ps )
Assertion sblbis
|- ( [ y / x ] ( ch <-> ph ) <-> ( [ y / x ] ch <-> ps ) )

Proof

Step Hyp Ref Expression
1 sblbis.1
 |-  ( [ y / x ] ph <-> ps )
2 sbbi
 |-  ( [ y / x ] ( ch <-> ph ) <-> ( [ y / x ] ch <-> [ y / x ] ph ) )
3 1 bibi2i
 |-  ( ( [ y / x ] ch <-> [ y / x ] ph ) <-> ( [ y / x ] ch <-> ps ) )
4 2 3 bitri
 |-  ( [ y / x ] ( ch <-> ph ) <-> ( [ y / x ] ch <-> ps ) )