Description: Introduce left biconditional inside of a substitution. (Contributed by NM, 19-Aug-1993)
Ref | Expression | ||
---|---|---|---|
Hypothesis | sblbis.1 | |- ( [ y / x ] ph <-> ps ) |
|
Assertion | sblbis | |- ( [ y / x ] ( ch <-> ph ) <-> ( [ y / x ] ch <-> ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sblbis.1 | |- ( [ y / x ] ph <-> ps ) |
|
2 | sbbi | |- ( [ y / x ] ( ch <-> ph ) <-> ( [ y / x ] ch <-> [ y / x ] ph ) ) |
|
3 | 1 | bibi2i | |- ( ( [ y / x ] ch <-> [ y / x ] ph ) <-> ( [ y / x ] ch <-> ps ) ) |
4 | 2 3 | bitri | |- ( [ y / x ] ( ch <-> ph ) <-> ( [ y / x ] ch <-> ps ) ) |