Step |
Hyp |
Ref |
Expression |
1 |
|
sbex |
|- ( [ y / x ] E. w A. z ( ph -> z = w ) <-> E. w [ y / x ] A. z ( ph -> z = w ) ) |
2 |
|
nfv |
|- F/ x z = w |
3 |
2
|
sblim |
|- ( [ y / x ] ( ph -> z = w ) <-> ( [ y / x ] ph -> z = w ) ) |
4 |
3
|
sbalv |
|- ( [ y / x ] A. z ( ph -> z = w ) <-> A. z ( [ y / x ] ph -> z = w ) ) |
5 |
4
|
exbii |
|- ( E. w [ y / x ] A. z ( ph -> z = w ) <-> E. w A. z ( [ y / x ] ph -> z = w ) ) |
6 |
1 5
|
bitri |
|- ( [ y / x ] E. w A. z ( ph -> z = w ) <-> E. w A. z ( [ y / x ] ph -> z = w ) ) |
7 |
|
df-mo |
|- ( E* z ph <-> E. w A. z ( ph -> z = w ) ) |
8 |
7
|
sbbii |
|- ( [ y / x ] E* z ph <-> [ y / x ] E. w A. z ( ph -> z = w ) ) |
9 |
|
df-mo |
|- ( E* z [ y / x ] ph <-> E. w A. z ( [ y / x ] ph -> z = w ) ) |
10 |
6 8 9
|
3bitr4i |
|- ( [ y / x ] E* z ph <-> E* z [ y / x ] ph ) |