Description: One direction of sbn , using fewer axioms. Compare 19.2 . (Contributed by Steven Nguyen, 18-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | sbn1 | |- ( [ t / x ] -. ph -> -. [ t / x ] ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsb | |- ( A. x -. F. -> -. [ t / x ] F. ) |
|
2 | fal | |- -. F. |
|
3 | 1 2 | mpg | |- -. [ t / x ] F. |
4 | pm2.21 | |- ( -. ph -> ( ph -> F. ) ) |
|
5 | 4 | sb2imi | |- ( [ t / x ] -. ph -> ( [ t / x ] ph -> [ t / x ] F. ) ) |
6 | 3 5 | mtoi | |- ( [ t / x ] -. ph -> -. [ t / x ] ph ) |