| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vex |  |-  y e. _V | 
						
							| 2 |  | csbtt |  |-  ( ( y e. _V /\ F/_ x A ) -> [_ y / x ]_ A = A ) | 
						
							| 3 | 1 2 | mpan |  |-  ( F/_ x A -> [_ y / x ]_ A = A ) | 
						
							| 4 |  | vex |  |-  z e. _V | 
						
							| 5 |  | csbtt |  |-  ( ( z e. _V /\ F/_ x A ) -> [_ z / x ]_ A = A ) | 
						
							| 6 | 4 5 | mpan |  |-  ( F/_ x A -> [_ z / x ]_ A = A ) | 
						
							| 7 | 3 6 | eqtr4d |  |-  ( F/_ x A -> [_ y / x ]_ A = [_ z / x ]_ A ) | 
						
							| 8 | 7 | alrimivv |  |-  ( F/_ x A -> A. y A. z [_ y / x ]_ A = [_ z / x ]_ A ) | 
						
							| 9 |  | nfv |  |-  F/ w A. y A. z [_ y / x ]_ A = [_ z / x ]_ A | 
						
							| 10 |  | eleq2 |  |-  ( [_ y / x ]_ A = [_ z / x ]_ A -> ( w e. [_ y / x ]_ A <-> w e. [_ z / x ]_ A ) ) | 
						
							| 11 |  | sbsbc |  |-  ( [ y / x ] w e. A <-> [. y / x ]. w e. A ) | 
						
							| 12 |  | sbcel2 |  |-  ( [. y / x ]. w e. A <-> w e. [_ y / x ]_ A ) | 
						
							| 13 | 11 12 | bitri |  |-  ( [ y / x ] w e. A <-> w e. [_ y / x ]_ A ) | 
						
							| 14 |  | sbsbc |  |-  ( [ z / x ] w e. A <-> [. z / x ]. w e. A ) | 
						
							| 15 |  | sbcel2 |  |-  ( [. z / x ]. w e. A <-> w e. [_ z / x ]_ A ) | 
						
							| 16 | 14 15 | bitri |  |-  ( [ z / x ] w e. A <-> w e. [_ z / x ]_ A ) | 
						
							| 17 | 10 13 16 | 3bitr4g |  |-  ( [_ y / x ]_ A = [_ z / x ]_ A -> ( [ y / x ] w e. A <-> [ z / x ] w e. A ) ) | 
						
							| 18 | 17 | 2alimi |  |-  ( A. y A. z [_ y / x ]_ A = [_ z / x ]_ A -> A. y A. z ( [ y / x ] w e. A <-> [ z / x ] w e. A ) ) | 
						
							| 19 |  | sbnf2 |  |-  ( F/ x w e. A <-> A. y A. z ( [ y / x ] w e. A <-> [ z / x ] w e. A ) ) | 
						
							| 20 | 18 19 | sylibr |  |-  ( A. y A. z [_ y / x ]_ A = [_ z / x ]_ A -> F/ x w e. A ) | 
						
							| 21 | 9 20 | nfcd |  |-  ( A. y A. z [_ y / x ]_ A = [_ z / x ]_ A -> F/_ x A ) | 
						
							| 22 | 8 21 | impbii |  |-  ( F/_ x A <-> A. y A. z [_ y / x ]_ A = [_ z / x ]_ A ) |