Step |
Hyp |
Ref |
Expression |
1 |
|
vex |
|- y e. _V |
2 |
|
csbtt |
|- ( ( y e. _V /\ F/_ x A ) -> [_ y / x ]_ A = A ) |
3 |
1 2
|
mpan |
|- ( F/_ x A -> [_ y / x ]_ A = A ) |
4 |
|
vex |
|- z e. _V |
5 |
|
csbtt |
|- ( ( z e. _V /\ F/_ x A ) -> [_ z / x ]_ A = A ) |
6 |
4 5
|
mpan |
|- ( F/_ x A -> [_ z / x ]_ A = A ) |
7 |
3 6
|
eqtr4d |
|- ( F/_ x A -> [_ y / x ]_ A = [_ z / x ]_ A ) |
8 |
7
|
alrimivv |
|- ( F/_ x A -> A. y A. z [_ y / x ]_ A = [_ z / x ]_ A ) |
9 |
|
nfv |
|- F/ w A. y A. z [_ y / x ]_ A = [_ z / x ]_ A |
10 |
|
eleq2 |
|- ( [_ y / x ]_ A = [_ z / x ]_ A -> ( w e. [_ y / x ]_ A <-> w e. [_ z / x ]_ A ) ) |
11 |
|
sbsbc |
|- ( [ y / x ] w e. A <-> [. y / x ]. w e. A ) |
12 |
|
sbcel2 |
|- ( [. y / x ]. w e. A <-> w e. [_ y / x ]_ A ) |
13 |
11 12
|
bitri |
|- ( [ y / x ] w e. A <-> w e. [_ y / x ]_ A ) |
14 |
|
sbsbc |
|- ( [ z / x ] w e. A <-> [. z / x ]. w e. A ) |
15 |
|
sbcel2 |
|- ( [. z / x ]. w e. A <-> w e. [_ z / x ]_ A ) |
16 |
14 15
|
bitri |
|- ( [ z / x ] w e. A <-> w e. [_ z / x ]_ A ) |
17 |
10 13 16
|
3bitr4g |
|- ( [_ y / x ]_ A = [_ z / x ]_ A -> ( [ y / x ] w e. A <-> [ z / x ] w e. A ) ) |
18 |
17
|
2alimi |
|- ( A. y A. z [_ y / x ]_ A = [_ z / x ]_ A -> A. y A. z ( [ y / x ] w e. A <-> [ z / x ] w e. A ) ) |
19 |
|
sbnf2 |
|- ( F/ x w e. A <-> A. y A. z ( [ y / x ] w e. A <-> [ z / x ] w e. A ) ) |
20 |
18 19
|
sylibr |
|- ( A. y A. z [_ y / x ]_ A = [_ z / x ]_ A -> F/ x w e. A ) |
21 |
9 20
|
nfcd |
|- ( A. y A. z [_ y / x ]_ A = [_ z / x ]_ A -> F/_ x A ) |
22 |
8 21
|
impbii |
|- ( F/_ x A <-> A. y A. z [_ y / x ]_ A = [_ z / x ]_ A ) |