Step |
Hyp |
Ref |
Expression |
1 |
|
sbim |
|- ( [ y / x ] ( -. ph -> ps ) <-> ( [ y / x ] -. ph -> [ y / x ] ps ) ) |
2 |
|
sbn |
|- ( [ y / x ] -. ph <-> -. [ y / x ] ph ) |
3 |
2
|
imbi1i |
|- ( ( [ y / x ] -. ph -> [ y / x ] ps ) <-> ( -. [ y / x ] ph -> [ y / x ] ps ) ) |
4 |
1 3
|
bitri |
|- ( [ y / x ] ( -. ph -> ps ) <-> ( -. [ y / x ] ph -> [ y / x ] ps ) ) |
5 |
|
df-or |
|- ( ( ph \/ ps ) <-> ( -. ph -> ps ) ) |
6 |
5
|
sbbii |
|- ( [ y / x ] ( ph \/ ps ) <-> [ y / x ] ( -. ph -> ps ) ) |
7 |
|
df-or |
|- ( ( [ y / x ] ph \/ [ y / x ] ps ) <-> ( -. [ y / x ] ph -> [ y / x ] ps ) ) |
8 |
4 6 7
|
3bitr4i |
|- ( [ y / x ] ( ph \/ ps ) <-> ( [ y / x ] ph \/ [ y / x ] ps ) ) |