Metamath Proof Explorer


Theorem sbrbif

Description: Introduce right biconditional inside of a substitution. (Contributed by NM, 18-Aug-1993) (Revised by Mario Carneiro, 4-Oct-2016)

Ref Expression
Hypotheses sbrbif.1
|- F/ x ch
sbrbif.2
|- ( [ y / x ] ph <-> ps )
Assertion sbrbif
|- ( [ y / x ] ( ph <-> ch ) <-> ( ps <-> ch ) )

Proof

Step Hyp Ref Expression
1 sbrbif.1
 |-  F/ x ch
2 sbrbif.2
 |-  ( [ y / x ] ph <-> ps )
3 2 sbrbis
 |-  ( [ y / x ] ( ph <-> ch ) <-> ( ps <-> [ y / x ] ch ) )
4 1 sbf
 |-  ( [ y / x ] ch <-> ch )
5 4 bibi2i
 |-  ( ( ps <-> [ y / x ] ch ) <-> ( ps <-> ch ) )
6 3 5 bitri
 |-  ( [ y / x ] ( ph <-> ch ) <-> ( ps <-> ch ) )