Description: Introduce right biconditional inside of a substitution. (Contributed by NM, 18-Aug-1993) (Revised by Mario Carneiro, 4-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sbrbif.1 | |- F/ x ch |
|
| sbrbif.2 | |- ( [ y / x ] ph <-> ps ) |
||
| Assertion | sbrbif | |- ( [ y / x ] ( ph <-> ch ) <-> ( ps <-> ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbrbif.1 | |- F/ x ch |
|
| 2 | sbrbif.2 | |- ( [ y / x ] ph <-> ps ) |
|
| 3 | 2 | sbrbis | |- ( [ y / x ] ( ph <-> ch ) <-> ( ps <-> [ y / x ] ch ) ) |
| 4 | 1 | sbf | |- ( [ y / x ] ch <-> ch ) |
| 5 | 4 | bibi2i | |- ( ( ps <-> [ y / x ] ch ) <-> ( ps <-> ch ) ) |
| 6 | 3 5 | bitri | |- ( [ y / x ] ( ph <-> ch ) <-> ( ps <-> ch ) ) |