Description: Introduce right biconditional inside of a substitution. (Contributed by NM, 18-Aug-1993) (Revised by Mario Carneiro, 4-Oct-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sbrbif.1 | |- F/ x ch |
|
sbrbif.2 | |- ( [ y / x ] ph <-> ps ) |
||
Assertion | sbrbif | |- ( [ y / x ] ( ph <-> ch ) <-> ( ps <-> ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbrbif.1 | |- F/ x ch |
|
2 | sbrbif.2 | |- ( [ y / x ] ph <-> ps ) |
|
3 | 2 | sbrbis | |- ( [ y / x ] ( ph <-> ch ) <-> ( ps <-> [ y / x ] ch ) ) |
4 | 1 | sbf | |- ( [ y / x ] ch <-> ch ) |
5 | 4 | bibi2i | |- ( ( ps <-> [ y / x ] ch ) <-> ( ps <-> ch ) ) |
6 | 3 5 | bitri | |- ( [ y / x ] ( ph <-> ch ) <-> ( ps <-> ch ) ) |