Metamath Proof Explorer


Theorem sbrbis

Description: Introduce right biconditional inside of a substitution. (Contributed by NM, 18-Aug-1993)

Ref Expression
Hypothesis sbrbis.1
|- ( [ y / x ] ph <-> ps )
Assertion sbrbis
|- ( [ y / x ] ( ph <-> ch ) <-> ( ps <-> [ y / x ] ch ) )

Proof

Step Hyp Ref Expression
1 sbrbis.1
 |-  ( [ y / x ] ph <-> ps )
2 sbbi
 |-  ( [ y / x ] ( ph <-> ch ) <-> ( [ y / x ] ph <-> [ y / x ] ch ) )
3 1 bibi1i
 |-  ( ( [ y / x ] ph <-> [ y / x ] ch ) <-> ( ps <-> [ y / x ] ch ) )
4 2 3 bitri
 |-  ( [ y / x ] ( ph <-> ch ) <-> ( ps <-> [ y / x ] ch ) )