Description: Introduce right biconditional inside of a substitution. (Contributed by NM, 18-Aug-1993)
Ref | Expression | ||
---|---|---|---|
Hypothesis | sbrbis.1 | |- ( [ y / x ] ph <-> ps ) |
|
Assertion | sbrbis | |- ( [ y / x ] ( ph <-> ch ) <-> ( ps <-> [ y / x ] ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbrbis.1 | |- ( [ y / x ] ph <-> ps ) |
|
2 | sbbi | |- ( [ y / x ] ( ph <-> ch ) <-> ( [ y / x ] ph <-> [ y / x ] ch ) ) |
|
3 | 1 | bibi1i | |- ( ( [ y / x ] ph <-> [ y / x ] ch ) <-> ( ps <-> [ y / x ] ch ) ) |
4 | 2 3 | bitri | |- ( [ y / x ] ( ph <-> ch ) <-> ( ps <-> [ y / x ] ch ) ) |