Metamath Proof Explorer


Theorem sbrim

Description: Substitution in an implication with a variable not free in the antecedent affects only the consequent. See sbrimv for a version with disjoint variables not requiring ax-10 . (Contributed by NM, 2-Jun-1993) (Revised by Mario Carneiro, 4-Oct-2016)

Ref Expression
Hypothesis sbrim.1
|- F/ x ph
Assertion sbrim
|- ( [ y / x ] ( ph -> ps ) <-> ( ph -> [ y / x ] ps ) )

Proof

Step Hyp Ref Expression
1 sbrim.1
 |-  F/ x ph
2 sbim
 |-  ( [ y / x ] ( ph -> ps ) <-> ( [ y / x ] ph -> [ y / x ] ps ) )
3 1 sbf
 |-  ( [ y / x ] ph <-> ph )
4 3 imbi1i
 |-  ( ( [ y / x ] ph -> [ y / x ] ps ) <-> ( ph -> [ y / x ] ps ) )
5 2 4 bitri
 |-  ( [ y / x ] ( ph -> ps ) <-> ( ph -> [ y / x ] ps ) )