Metamath Proof Explorer


Theorem sbrimv

Description: Substitution in an implication with a variable not free in the antecedent affects only the consequent. Version of sbrim not depending on ax-10 , but with disjoint variables. (Contributed by Wolf Lammen, 28-Jan-2024)

Ref Expression
Hypothesis sbrim.1
|- F/ x ph
Assertion sbrimv
|- ( [ y / x ] ( ph -> ps ) <-> ( ph -> [ y / x ] ps ) )

Proof

Step Hyp Ref Expression
1 sbrim.1
 |-  F/ x ph
2 1 19.21
 |-  ( A. x ( ph -> ( x = y -> ps ) ) <-> ( ph -> A. x ( x = y -> ps ) ) )
3 2 sbrimvlem
 |-  ( [ y / x ] ( ph -> ps ) <-> ( ph -> [ y / x ] ps ) )