Step |
Hyp |
Ref |
Expression |
1 |
|
sbrimvlem.1 |
|- ( A. x ( ph -> ( x = y -> ps ) ) <-> ( ph -> A. x ( x = y -> ps ) ) ) |
2 |
|
sb6 |
|- ( [ y / x ] ( ph -> ps ) <-> A. x ( x = y -> ( ph -> ps ) ) ) |
3 |
|
bi2.04 |
|- ( ( ph -> ( x = y -> ps ) ) <-> ( x = y -> ( ph -> ps ) ) ) |
4 |
3
|
albii |
|- ( A. x ( ph -> ( x = y -> ps ) ) <-> A. x ( x = y -> ( ph -> ps ) ) ) |
5 |
2 4 1
|
3bitr2i |
|- ( [ y / x ] ( ph -> ps ) <-> ( ph -> A. x ( x = y -> ps ) ) ) |
6 |
|
sb6 |
|- ( [ y / x ] ps <-> A. x ( x = y -> ps ) ) |
7 |
6
|
imbi2i |
|- ( ( ph -> [ y / x ] ps ) <-> ( ph -> A. x ( x = y -> ps ) ) ) |
8 |
5 7
|
bitr4i |
|- ( [ y / x ] ( ph -> ps ) <-> ( ph -> [ y / x ] ps ) ) |