| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sb6 |
|- ( [ y / x ] ( ph -> ps ) <-> A. x ( x = y -> ( ph -> ps ) ) ) |
| 2 |
|
bi2.04 |
|- ( ( ph -> ( x = y -> ps ) ) <-> ( x = y -> ( ph -> ps ) ) ) |
| 3 |
2
|
albii |
|- ( A. x ( ph -> ( x = y -> ps ) ) <-> A. x ( x = y -> ( ph -> ps ) ) ) |
| 4 |
|
19.21v |
|- ( A. x ( ph -> ( x = y -> ps ) ) <-> ( ph -> A. x ( x = y -> ps ) ) ) |
| 5 |
1 3 4
|
3bitr2i |
|- ( [ y / x ] ( ph -> ps ) <-> ( ph -> A. x ( x = y -> ps ) ) ) |
| 6 |
|
sb6 |
|- ( [ y / x ] ps <-> A. x ( x = y -> ps ) ) |
| 7 |
6
|
imbi2i |
|- ( ( ph -> [ y / x ] ps ) <-> ( ph -> A. x ( x = y -> ps ) ) ) |
| 8 |
5 7
|
bitr4i |
|- ( [ y / x ] ( ph -> ps ) <-> ( ph -> [ y / x ] ps ) ) |