Step |
Hyp |
Ref |
Expression |
1 |
|
relen |
|- Rel ~~ |
2 |
|
inss1 |
|- ( ~<_ i^i `' ~<_ ) C_ ~<_ |
3 |
|
reldom |
|- Rel ~<_ |
4 |
|
relss |
|- ( ( ~<_ i^i `' ~<_ ) C_ ~<_ -> ( Rel ~<_ -> Rel ( ~<_ i^i `' ~<_ ) ) ) |
5 |
2 3 4
|
mp2 |
|- Rel ( ~<_ i^i `' ~<_ ) |
6 |
|
brin |
|- ( x ( ~<_ i^i `' ~<_ ) y <-> ( x ~<_ y /\ x `' ~<_ y ) ) |
7 |
|
vex |
|- x e. _V |
8 |
|
vex |
|- y e. _V |
9 |
7 8
|
brcnv |
|- ( x `' ~<_ y <-> y ~<_ x ) |
10 |
9
|
anbi2i |
|- ( ( x ~<_ y /\ x `' ~<_ y ) <-> ( x ~<_ y /\ y ~<_ x ) ) |
11 |
|
sbthb |
|- ( ( x ~<_ y /\ y ~<_ x ) <-> x ~~ y ) |
12 |
6 10 11
|
3bitrri |
|- ( x ~~ y <-> x ( ~<_ i^i `' ~<_ ) y ) |
13 |
1 5 12
|
eqbrriv |
|- ~~ = ( ~<_ i^i `' ~<_ ) |