| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relen |  |-  Rel ~~ | 
						
							| 2 |  | inss1 |  |-  ( ~<_ i^i `' ~<_ ) C_ ~<_ | 
						
							| 3 |  | reldom |  |-  Rel ~<_ | 
						
							| 4 |  | relss |  |-  ( ( ~<_ i^i `' ~<_ ) C_ ~<_ -> ( Rel ~<_ -> Rel ( ~<_ i^i `' ~<_ ) ) ) | 
						
							| 5 | 2 3 4 | mp2 |  |-  Rel ( ~<_ i^i `' ~<_ ) | 
						
							| 6 |  | brin |  |-  ( x ( ~<_ i^i `' ~<_ ) y <-> ( x ~<_ y /\ x `' ~<_ y ) ) | 
						
							| 7 |  | vex |  |-  x e. _V | 
						
							| 8 |  | vex |  |-  y e. _V | 
						
							| 9 | 7 8 | brcnv |  |-  ( x `' ~<_ y <-> y ~<_ x ) | 
						
							| 10 | 9 | anbi2i |  |-  ( ( x ~<_ y /\ x `' ~<_ y ) <-> ( x ~<_ y /\ y ~<_ x ) ) | 
						
							| 11 |  | sbthb |  |-  ( ( x ~<_ y /\ y ~<_ x ) <-> x ~~ y ) | 
						
							| 12 | 6 10 11 | 3bitrri |  |-  ( x ~~ y <-> x ( ~<_ i^i `' ~<_ ) y ) | 
						
							| 13 | 1 5 12 | eqbrriv |  |-  ~~ = ( ~<_ i^i `' ~<_ ) |