Step |
Hyp |
Ref |
Expression |
1 |
|
reldom |
|- Rel ~<_ |
2 |
1
|
brrelex1i |
|- ( A ~<_ B -> A e. _V ) |
3 |
1
|
brrelex1i |
|- ( B ~<_ A -> B e. _V ) |
4 |
|
breq1 |
|- ( z = A -> ( z ~<_ w <-> A ~<_ w ) ) |
5 |
|
breq2 |
|- ( z = A -> ( w ~<_ z <-> w ~<_ A ) ) |
6 |
4 5
|
3anbi23d |
|- ( z = A -> ( ( w e. Fin /\ z ~<_ w /\ w ~<_ z ) <-> ( w e. Fin /\ A ~<_ w /\ w ~<_ A ) ) ) |
7 |
|
breq1 |
|- ( z = A -> ( z ~~ w <-> A ~~ w ) ) |
8 |
6 7
|
imbi12d |
|- ( z = A -> ( ( ( w e. Fin /\ z ~<_ w /\ w ~<_ z ) -> z ~~ w ) <-> ( ( w e. Fin /\ A ~<_ w /\ w ~<_ A ) -> A ~~ w ) ) ) |
9 |
|
eleq1 |
|- ( w = B -> ( w e. Fin <-> B e. Fin ) ) |
10 |
|
breq2 |
|- ( w = B -> ( A ~<_ w <-> A ~<_ B ) ) |
11 |
|
breq1 |
|- ( w = B -> ( w ~<_ A <-> B ~<_ A ) ) |
12 |
9 10 11
|
3anbi123d |
|- ( w = B -> ( ( w e. Fin /\ A ~<_ w /\ w ~<_ A ) <-> ( B e. Fin /\ A ~<_ B /\ B ~<_ A ) ) ) |
13 |
|
breq2 |
|- ( w = B -> ( A ~~ w <-> A ~~ B ) ) |
14 |
12 13
|
imbi12d |
|- ( w = B -> ( ( ( w e. Fin /\ A ~<_ w /\ w ~<_ A ) -> A ~~ w ) <-> ( ( B e. Fin /\ A ~<_ B /\ B ~<_ A ) -> A ~~ B ) ) ) |
15 |
|
vex |
|- z e. _V |
16 |
|
sseq1 |
|- ( y = x -> ( y C_ z <-> x C_ z ) ) |
17 |
|
imaeq2 |
|- ( y = x -> ( f " y ) = ( f " x ) ) |
18 |
17
|
difeq2d |
|- ( y = x -> ( w \ ( f " y ) ) = ( w \ ( f " x ) ) ) |
19 |
18
|
imaeq2d |
|- ( y = x -> ( g " ( w \ ( f " y ) ) ) = ( g " ( w \ ( f " x ) ) ) ) |
20 |
|
difeq2 |
|- ( y = x -> ( z \ y ) = ( z \ x ) ) |
21 |
19 20
|
sseq12d |
|- ( y = x -> ( ( g " ( w \ ( f " y ) ) ) C_ ( z \ y ) <-> ( g " ( w \ ( f " x ) ) ) C_ ( z \ x ) ) ) |
22 |
16 21
|
anbi12d |
|- ( y = x -> ( ( y C_ z /\ ( g " ( w \ ( f " y ) ) ) C_ ( z \ y ) ) <-> ( x C_ z /\ ( g " ( w \ ( f " x ) ) ) C_ ( z \ x ) ) ) ) |
23 |
22
|
cbvabv |
|- { y | ( y C_ z /\ ( g " ( w \ ( f " y ) ) ) C_ ( z \ y ) ) } = { x | ( x C_ z /\ ( g " ( w \ ( f " x ) ) ) C_ ( z \ x ) ) } |
24 |
|
eqid |
|- ( ( f |` U. { y | ( y C_ z /\ ( g " ( w \ ( f " y ) ) ) C_ ( z \ y ) ) } ) u. ( `' g |` ( z \ U. { y | ( y C_ z /\ ( g " ( w \ ( f " y ) ) ) C_ ( z \ y ) ) } ) ) ) = ( ( f |` U. { y | ( y C_ z /\ ( g " ( w \ ( f " y ) ) ) C_ ( z \ y ) ) } ) u. ( `' g |` ( z \ U. { y | ( y C_ z /\ ( g " ( w \ ( f " y ) ) ) C_ ( z \ y ) ) } ) ) ) |
25 |
|
vex |
|- w e. _V |
26 |
15 23 24 25
|
sbthfilem |
|- ( ( w e. Fin /\ z ~<_ w /\ w ~<_ z ) -> z ~~ w ) |
27 |
8 14 26
|
vtocl2g |
|- ( ( A e. _V /\ B e. _V ) -> ( ( B e. Fin /\ A ~<_ B /\ B ~<_ A ) -> A ~~ B ) ) |
28 |
2 3 27
|
syl2an |
|- ( ( A ~<_ B /\ B ~<_ A ) -> ( ( B e. Fin /\ A ~<_ B /\ B ~<_ A ) -> A ~~ B ) ) |
29 |
28
|
3adant1 |
|- ( ( B e. Fin /\ A ~<_ B /\ B ~<_ A ) -> ( ( B e. Fin /\ A ~<_ B /\ B ~<_ A ) -> A ~~ B ) ) |
30 |
29
|
pm2.43i |
|- ( ( B e. Fin /\ A ~<_ B /\ B ~<_ A ) -> A ~~ B ) |