| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbthlem.1 |
|- A e. _V |
| 2 |
|
sbthlem.2 |
|- D = { x | ( x C_ A /\ ( g " ( B \ ( f " x ) ) ) C_ ( A \ x ) ) } |
| 3 |
|
unissb |
|- ( U. D C_ ( A \ ( g " ( B \ ( f " U. D ) ) ) ) <-> A. x e. D x C_ ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) |
| 4 |
2
|
eqabri |
|- ( x e. D <-> ( x C_ A /\ ( g " ( B \ ( f " x ) ) ) C_ ( A \ x ) ) ) |
| 5 |
|
difss2 |
|- ( ( g " ( B \ ( f " x ) ) ) C_ ( A \ x ) -> ( g " ( B \ ( f " x ) ) ) C_ A ) |
| 6 |
|
ssconb |
|- ( ( x C_ A /\ ( g " ( B \ ( f " x ) ) ) C_ A ) -> ( x C_ ( A \ ( g " ( B \ ( f " x ) ) ) ) <-> ( g " ( B \ ( f " x ) ) ) C_ ( A \ x ) ) ) |
| 7 |
6
|
exbiri |
|- ( x C_ A -> ( ( g " ( B \ ( f " x ) ) ) C_ A -> ( ( g " ( B \ ( f " x ) ) ) C_ ( A \ x ) -> x C_ ( A \ ( g " ( B \ ( f " x ) ) ) ) ) ) ) |
| 8 |
5 7
|
syl5 |
|- ( x C_ A -> ( ( g " ( B \ ( f " x ) ) ) C_ ( A \ x ) -> ( ( g " ( B \ ( f " x ) ) ) C_ ( A \ x ) -> x C_ ( A \ ( g " ( B \ ( f " x ) ) ) ) ) ) ) |
| 9 |
8
|
pm2.43d |
|- ( x C_ A -> ( ( g " ( B \ ( f " x ) ) ) C_ ( A \ x ) -> x C_ ( A \ ( g " ( B \ ( f " x ) ) ) ) ) ) |
| 10 |
9
|
imp |
|- ( ( x C_ A /\ ( g " ( B \ ( f " x ) ) ) C_ ( A \ x ) ) -> x C_ ( A \ ( g " ( B \ ( f " x ) ) ) ) ) |
| 11 |
4 10
|
sylbi |
|- ( x e. D -> x C_ ( A \ ( g " ( B \ ( f " x ) ) ) ) ) |
| 12 |
|
elssuni |
|- ( x e. D -> x C_ U. D ) |
| 13 |
|
imass2 |
|- ( x C_ U. D -> ( f " x ) C_ ( f " U. D ) ) |
| 14 |
|
sscon |
|- ( ( f " x ) C_ ( f " U. D ) -> ( B \ ( f " U. D ) ) C_ ( B \ ( f " x ) ) ) |
| 15 |
12 13 14
|
3syl |
|- ( x e. D -> ( B \ ( f " U. D ) ) C_ ( B \ ( f " x ) ) ) |
| 16 |
|
imass2 |
|- ( ( B \ ( f " U. D ) ) C_ ( B \ ( f " x ) ) -> ( g " ( B \ ( f " U. D ) ) ) C_ ( g " ( B \ ( f " x ) ) ) ) |
| 17 |
|
sscon |
|- ( ( g " ( B \ ( f " U. D ) ) ) C_ ( g " ( B \ ( f " x ) ) ) -> ( A \ ( g " ( B \ ( f " x ) ) ) ) C_ ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) |
| 18 |
15 16 17
|
3syl |
|- ( x e. D -> ( A \ ( g " ( B \ ( f " x ) ) ) ) C_ ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) |
| 19 |
11 18
|
sstrd |
|- ( x e. D -> x C_ ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) |
| 20 |
3 19
|
mprgbir |
|- U. D C_ ( A \ ( g " ( B \ ( f " U. D ) ) ) ) |