Step |
Hyp |
Ref |
Expression |
1 |
|
sbthlem.1 |
|- A e. _V |
2 |
|
sbthlem.2 |
|- D = { x | ( x C_ A /\ ( g " ( B \ ( f " x ) ) ) C_ ( A \ x ) ) } |
3 |
1 2
|
sbthlem1 |
|- U. D C_ ( A \ ( g " ( B \ ( f " U. D ) ) ) ) |
4 |
|
imass2 |
|- ( U. D C_ ( A \ ( g " ( B \ ( f " U. D ) ) ) ) -> ( f " U. D ) C_ ( f " ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) |
5 |
|
sscon |
|- ( ( f " U. D ) C_ ( f " ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) -> ( B \ ( f " ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) C_ ( B \ ( f " U. D ) ) ) |
6 |
3 4 5
|
mp2b |
|- ( B \ ( f " ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) C_ ( B \ ( f " U. D ) ) |
7 |
|
imass2 |
|- ( ( B \ ( f " ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) C_ ( B \ ( f " U. D ) ) -> ( g " ( B \ ( f " ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) ) C_ ( g " ( B \ ( f " U. D ) ) ) ) |
8 |
|
sscon |
|- ( ( g " ( B \ ( f " ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) ) C_ ( g " ( B \ ( f " U. D ) ) ) -> ( A \ ( g " ( B \ ( f " U. D ) ) ) ) C_ ( A \ ( g " ( B \ ( f " ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) ) ) ) |
9 |
6 7 8
|
mp2b |
|- ( A \ ( g " ( B \ ( f " U. D ) ) ) ) C_ ( A \ ( g " ( B \ ( f " ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) ) ) |
10 |
|
imassrn |
|- ( g " ( B \ ( f " ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) ) C_ ran g |
11 |
|
sstr2 |
|- ( ( g " ( B \ ( f " ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) ) C_ ran g -> ( ran g C_ A -> ( g " ( B \ ( f " ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) ) C_ A ) ) |
12 |
10 11
|
ax-mp |
|- ( ran g C_ A -> ( g " ( B \ ( f " ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) ) C_ A ) |
13 |
|
difss |
|- ( A \ ( g " ( B \ ( f " U. D ) ) ) ) C_ A |
14 |
|
ssconb |
|- ( ( ( g " ( B \ ( f " ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) ) C_ A /\ ( A \ ( g " ( B \ ( f " U. D ) ) ) ) C_ A ) -> ( ( g " ( B \ ( f " ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) ) C_ ( A \ ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) <-> ( A \ ( g " ( B \ ( f " U. D ) ) ) ) C_ ( A \ ( g " ( B \ ( f " ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) ) ) ) ) |
15 |
12 13 14
|
sylancl |
|- ( ran g C_ A -> ( ( g " ( B \ ( f " ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) ) C_ ( A \ ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) <-> ( A \ ( g " ( B \ ( f " U. D ) ) ) ) C_ ( A \ ( g " ( B \ ( f " ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) ) ) ) ) |
16 |
9 15
|
mpbiri |
|- ( ran g C_ A -> ( g " ( B \ ( f " ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) ) C_ ( A \ ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) |
17 |
16 13
|
jctil |
|- ( ran g C_ A -> ( ( A \ ( g " ( B \ ( f " U. D ) ) ) ) C_ A /\ ( g " ( B \ ( f " ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) ) C_ ( A \ ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) ) |
18 |
1
|
difexi |
|- ( A \ ( g " ( B \ ( f " U. D ) ) ) ) e. _V |
19 |
|
sseq1 |
|- ( x = ( A \ ( g " ( B \ ( f " U. D ) ) ) ) -> ( x C_ A <-> ( A \ ( g " ( B \ ( f " U. D ) ) ) ) C_ A ) ) |
20 |
|
imaeq2 |
|- ( x = ( A \ ( g " ( B \ ( f " U. D ) ) ) ) -> ( f " x ) = ( f " ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) |
21 |
20
|
difeq2d |
|- ( x = ( A \ ( g " ( B \ ( f " U. D ) ) ) ) -> ( B \ ( f " x ) ) = ( B \ ( f " ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) ) |
22 |
21
|
imaeq2d |
|- ( x = ( A \ ( g " ( B \ ( f " U. D ) ) ) ) -> ( g " ( B \ ( f " x ) ) ) = ( g " ( B \ ( f " ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) ) ) |
23 |
|
difeq2 |
|- ( x = ( A \ ( g " ( B \ ( f " U. D ) ) ) ) -> ( A \ x ) = ( A \ ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) |
24 |
22 23
|
sseq12d |
|- ( x = ( A \ ( g " ( B \ ( f " U. D ) ) ) ) -> ( ( g " ( B \ ( f " x ) ) ) C_ ( A \ x ) <-> ( g " ( B \ ( f " ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) ) C_ ( A \ ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) ) |
25 |
19 24
|
anbi12d |
|- ( x = ( A \ ( g " ( B \ ( f " U. D ) ) ) ) -> ( ( x C_ A /\ ( g " ( B \ ( f " x ) ) ) C_ ( A \ x ) ) <-> ( ( A \ ( g " ( B \ ( f " U. D ) ) ) ) C_ A /\ ( g " ( B \ ( f " ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) ) C_ ( A \ ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) ) ) |
26 |
18 25
|
elab |
|- ( ( A \ ( g " ( B \ ( f " U. D ) ) ) ) e. { x | ( x C_ A /\ ( g " ( B \ ( f " x ) ) ) C_ ( A \ x ) ) } <-> ( ( A \ ( g " ( B \ ( f " U. D ) ) ) ) C_ A /\ ( g " ( B \ ( f " ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) ) C_ ( A \ ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) ) |
27 |
17 26
|
sylibr |
|- ( ran g C_ A -> ( A \ ( g " ( B \ ( f " U. D ) ) ) ) e. { x | ( x C_ A /\ ( g " ( B \ ( f " x ) ) ) C_ ( A \ x ) ) } ) |
28 |
27 2
|
eleqtrrdi |
|- ( ran g C_ A -> ( A \ ( g " ( B \ ( f " U. D ) ) ) ) e. D ) |
29 |
|
elssuni |
|- ( ( A \ ( g " ( B \ ( f " U. D ) ) ) ) e. D -> ( A \ ( g " ( B \ ( f " U. D ) ) ) ) C_ U. D ) |
30 |
28 29
|
syl |
|- ( ran g C_ A -> ( A \ ( g " ( B \ ( f " U. D ) ) ) ) C_ U. D ) |