| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbthlem.1 |  |-  A e. _V | 
						
							| 2 |  | sbthlem.2 |  |-  D = { x | ( x C_ A /\ ( g " ( B \ ( f " x ) ) ) C_ ( A \ x ) ) } | 
						
							| 3 | 1 2 | sbthlem2 |  |-  ( ran g C_ A -> ( A \ ( g " ( B \ ( f " U. D ) ) ) ) C_ U. D ) | 
						
							| 4 | 1 2 | sbthlem1 |  |-  U. D C_ ( A \ ( g " ( B \ ( f " U. D ) ) ) ) | 
						
							| 5 | 3 4 | jctil |  |-  ( ran g C_ A -> ( U. D C_ ( A \ ( g " ( B \ ( f " U. D ) ) ) ) /\ ( A \ ( g " ( B \ ( f " U. D ) ) ) ) C_ U. D ) ) | 
						
							| 6 |  | eqss |  |-  ( U. D = ( A \ ( g " ( B \ ( f " U. D ) ) ) ) <-> ( U. D C_ ( A \ ( g " ( B \ ( f " U. D ) ) ) ) /\ ( A \ ( g " ( B \ ( f " U. D ) ) ) ) C_ U. D ) ) | 
						
							| 7 | 5 6 | sylibr |  |-  ( ran g C_ A -> U. D = ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) | 
						
							| 8 | 7 | difeq2d |  |-  ( ran g C_ A -> ( A \ U. D ) = ( A \ ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) | 
						
							| 9 |  | imassrn |  |-  ( g " ( B \ ( f " U. D ) ) ) C_ ran g | 
						
							| 10 |  | sstr2 |  |-  ( ( g " ( B \ ( f " U. D ) ) ) C_ ran g -> ( ran g C_ A -> ( g " ( B \ ( f " U. D ) ) ) C_ A ) ) | 
						
							| 11 | 9 10 | ax-mp |  |-  ( ran g C_ A -> ( g " ( B \ ( f " U. D ) ) ) C_ A ) | 
						
							| 12 |  | dfss4 |  |-  ( ( g " ( B \ ( f " U. D ) ) ) C_ A <-> ( A \ ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) = ( g " ( B \ ( f " U. D ) ) ) ) | 
						
							| 13 | 11 12 | sylib |  |-  ( ran g C_ A -> ( A \ ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) = ( g " ( B \ ( f " U. D ) ) ) ) | 
						
							| 14 | 8 13 | eqtr2d |  |-  ( ran g C_ A -> ( g " ( B \ ( f " U. D ) ) ) = ( A \ U. D ) ) |