| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbthlem.1 |  |-  A e. _V | 
						
							| 2 |  | sbthlem.2 |  |-  D = { x | ( x C_ A /\ ( g " ( B \ ( f " x ) ) ) C_ ( A \ x ) ) } | 
						
							| 3 |  | df-ima |  |-  ( `' g " ( A \ U. D ) ) = ran ( `' g |` ( A \ U. D ) ) | 
						
							| 4 |  | difss |  |-  ( B \ ( f " U. D ) ) C_ B | 
						
							| 5 |  | sseq2 |  |-  ( dom g = B -> ( ( B \ ( f " U. D ) ) C_ dom g <-> ( B \ ( f " U. D ) ) C_ B ) ) | 
						
							| 6 | 4 5 | mpbiri |  |-  ( dom g = B -> ( B \ ( f " U. D ) ) C_ dom g ) | 
						
							| 7 |  | ssdmres |  |-  ( ( B \ ( f " U. D ) ) C_ dom g <-> dom ( g |` ( B \ ( f " U. D ) ) ) = ( B \ ( f " U. D ) ) ) | 
						
							| 8 | 6 7 | sylib |  |-  ( dom g = B -> dom ( g |` ( B \ ( f " U. D ) ) ) = ( B \ ( f " U. D ) ) ) | 
						
							| 9 |  | dfdm4 |  |-  dom ( g |` ( B \ ( f " U. D ) ) ) = ran `' ( g |` ( B \ ( f " U. D ) ) ) | 
						
							| 10 | 8 9 | eqtr3di |  |-  ( dom g = B -> ( B \ ( f " U. D ) ) = ran `' ( g |` ( B \ ( f " U. D ) ) ) ) | 
						
							| 11 |  | funcnvres |  |-  ( Fun `' g -> `' ( g |` ( B \ ( f " U. D ) ) ) = ( `' g |` ( g " ( B \ ( f " U. D ) ) ) ) ) | 
						
							| 12 | 1 2 | sbthlem3 |  |-  ( ran g C_ A -> ( g " ( B \ ( f " U. D ) ) ) = ( A \ U. D ) ) | 
						
							| 13 | 12 | reseq2d |  |-  ( ran g C_ A -> ( `' g |` ( g " ( B \ ( f " U. D ) ) ) ) = ( `' g |` ( A \ U. D ) ) ) | 
						
							| 14 | 11 13 | sylan9eqr |  |-  ( ( ran g C_ A /\ Fun `' g ) -> `' ( g |` ( B \ ( f " U. D ) ) ) = ( `' g |` ( A \ U. D ) ) ) | 
						
							| 15 | 14 | rneqd |  |-  ( ( ran g C_ A /\ Fun `' g ) -> ran `' ( g |` ( B \ ( f " U. D ) ) ) = ran ( `' g |` ( A \ U. D ) ) ) | 
						
							| 16 | 10 15 | sylan9eq |  |-  ( ( dom g = B /\ ( ran g C_ A /\ Fun `' g ) ) -> ( B \ ( f " U. D ) ) = ran ( `' g |` ( A \ U. D ) ) ) | 
						
							| 17 | 16 | anassrs |  |-  ( ( ( dom g = B /\ ran g C_ A ) /\ Fun `' g ) -> ( B \ ( f " U. D ) ) = ran ( `' g |` ( A \ U. D ) ) ) | 
						
							| 18 | 3 17 | eqtr4id |  |-  ( ( ( dom g = B /\ ran g C_ A ) /\ Fun `' g ) -> ( `' g " ( A \ U. D ) ) = ( B \ ( f " U. D ) ) ) |