Step |
Hyp |
Ref |
Expression |
1 |
|
sbthlem.1 |
|- A e. _V |
2 |
|
sbthlem.2 |
|- D = { x | ( x C_ A /\ ( g " ( B \ ( f " x ) ) ) C_ ( A \ x ) ) } |
3 |
|
df-ima |
|- ( `' g " ( A \ U. D ) ) = ran ( `' g |` ( A \ U. D ) ) |
4 |
|
difss |
|- ( B \ ( f " U. D ) ) C_ B |
5 |
|
sseq2 |
|- ( dom g = B -> ( ( B \ ( f " U. D ) ) C_ dom g <-> ( B \ ( f " U. D ) ) C_ B ) ) |
6 |
4 5
|
mpbiri |
|- ( dom g = B -> ( B \ ( f " U. D ) ) C_ dom g ) |
7 |
|
ssdmres |
|- ( ( B \ ( f " U. D ) ) C_ dom g <-> dom ( g |` ( B \ ( f " U. D ) ) ) = ( B \ ( f " U. D ) ) ) |
8 |
6 7
|
sylib |
|- ( dom g = B -> dom ( g |` ( B \ ( f " U. D ) ) ) = ( B \ ( f " U. D ) ) ) |
9 |
|
dfdm4 |
|- dom ( g |` ( B \ ( f " U. D ) ) ) = ran `' ( g |` ( B \ ( f " U. D ) ) ) |
10 |
8 9
|
eqtr3di |
|- ( dom g = B -> ( B \ ( f " U. D ) ) = ran `' ( g |` ( B \ ( f " U. D ) ) ) ) |
11 |
|
funcnvres |
|- ( Fun `' g -> `' ( g |` ( B \ ( f " U. D ) ) ) = ( `' g |` ( g " ( B \ ( f " U. D ) ) ) ) ) |
12 |
1 2
|
sbthlem3 |
|- ( ran g C_ A -> ( g " ( B \ ( f " U. D ) ) ) = ( A \ U. D ) ) |
13 |
12
|
reseq2d |
|- ( ran g C_ A -> ( `' g |` ( g " ( B \ ( f " U. D ) ) ) ) = ( `' g |` ( A \ U. D ) ) ) |
14 |
11 13
|
sylan9eqr |
|- ( ( ran g C_ A /\ Fun `' g ) -> `' ( g |` ( B \ ( f " U. D ) ) ) = ( `' g |` ( A \ U. D ) ) ) |
15 |
14
|
rneqd |
|- ( ( ran g C_ A /\ Fun `' g ) -> ran `' ( g |` ( B \ ( f " U. D ) ) ) = ran ( `' g |` ( A \ U. D ) ) ) |
16 |
10 15
|
sylan9eq |
|- ( ( dom g = B /\ ( ran g C_ A /\ Fun `' g ) ) -> ( B \ ( f " U. D ) ) = ran ( `' g |` ( A \ U. D ) ) ) |
17 |
16
|
anassrs |
|- ( ( ( dom g = B /\ ran g C_ A ) /\ Fun `' g ) -> ( B \ ( f " U. D ) ) = ran ( `' g |` ( A \ U. D ) ) ) |
18 |
3 17
|
eqtr4id |
|- ( ( ( dom g = B /\ ran g C_ A ) /\ Fun `' g ) -> ( `' g " ( A \ U. D ) ) = ( B \ ( f " U. D ) ) ) |