| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbthlem.1 |  |-  A e. _V | 
						
							| 2 |  | sbthlem.2 |  |-  D = { x | ( x C_ A /\ ( g " ( B \ ( f " x ) ) ) C_ ( A \ x ) ) } | 
						
							| 3 |  | sbthlem.3 |  |-  H = ( ( f |` U. D ) u. ( `' g |` ( A \ U. D ) ) ) | 
						
							| 4 |  | rnun |  |-  ran ( ( f |` U. D ) u. ( `' g |` ( A \ U. D ) ) ) = ( ran ( f |` U. D ) u. ran ( `' g |` ( A \ U. D ) ) ) | 
						
							| 5 | 3 | rneqi |  |-  ran H = ran ( ( f |` U. D ) u. ( `' g |` ( A \ U. D ) ) ) | 
						
							| 6 |  | df-ima |  |-  ( f " U. D ) = ran ( f |` U. D ) | 
						
							| 7 | 6 | uneq1i |  |-  ( ( f " U. D ) u. ran ( `' g |` ( A \ U. D ) ) ) = ( ran ( f |` U. D ) u. ran ( `' g |` ( A \ U. D ) ) ) | 
						
							| 8 | 4 5 7 | 3eqtr4i |  |-  ran H = ( ( f " U. D ) u. ran ( `' g |` ( A \ U. D ) ) ) | 
						
							| 9 | 1 2 | sbthlem4 |  |-  ( ( ( dom g = B /\ ran g C_ A ) /\ Fun `' g ) -> ( `' g " ( A \ U. D ) ) = ( B \ ( f " U. D ) ) ) | 
						
							| 10 |  | df-ima |  |-  ( `' g " ( A \ U. D ) ) = ran ( `' g |` ( A \ U. D ) ) | 
						
							| 11 | 9 10 | eqtr3di |  |-  ( ( ( dom g = B /\ ran g C_ A ) /\ Fun `' g ) -> ( B \ ( f " U. D ) ) = ran ( `' g |` ( A \ U. D ) ) ) | 
						
							| 12 | 11 | uneq2d |  |-  ( ( ( dom g = B /\ ran g C_ A ) /\ Fun `' g ) -> ( ( f " U. D ) u. ( B \ ( f " U. D ) ) ) = ( ( f " U. D ) u. ran ( `' g |` ( A \ U. D ) ) ) ) | 
						
							| 13 | 8 12 | eqtr4id |  |-  ( ( ( dom g = B /\ ran g C_ A ) /\ Fun `' g ) -> ran H = ( ( f " U. D ) u. ( B \ ( f " U. D ) ) ) ) | 
						
							| 14 |  | imassrn |  |-  ( f " U. D ) C_ ran f | 
						
							| 15 |  | sstr2 |  |-  ( ( f " U. D ) C_ ran f -> ( ran f C_ B -> ( f " U. D ) C_ B ) ) | 
						
							| 16 | 14 15 | ax-mp |  |-  ( ran f C_ B -> ( f " U. D ) C_ B ) | 
						
							| 17 |  | undif |  |-  ( ( f " U. D ) C_ B <-> ( ( f " U. D ) u. ( B \ ( f " U. D ) ) ) = B ) | 
						
							| 18 | 16 17 | sylib |  |-  ( ran f C_ B -> ( ( f " U. D ) u. ( B \ ( f " U. D ) ) ) = B ) | 
						
							| 19 | 13 18 | sylan9eqr |  |-  ( ( ran f C_ B /\ ( ( dom g = B /\ ran g C_ A ) /\ Fun `' g ) ) -> ran H = B ) |