| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbthlem.1 |  |-  A e. _V | 
						
							| 2 |  | sbthlem.2 |  |-  D = { x | ( x C_ A /\ ( g " ( B \ ( f " x ) ) ) C_ ( A \ x ) ) } | 
						
							| 3 |  | sbthlem.3 |  |-  H = ( ( f |` U. D ) u. ( `' g |` ( A \ U. D ) ) ) | 
						
							| 4 |  | funres11 |  |-  ( Fun `' f -> Fun `' ( f |` U. D ) ) | 
						
							| 5 |  | funcnvcnv |  |-  ( Fun g -> Fun `' `' g ) | 
						
							| 6 |  | funres11 |  |-  ( Fun `' `' g -> Fun `' ( `' g |` ( A \ U. D ) ) ) | 
						
							| 7 | 5 6 | syl |  |-  ( Fun g -> Fun `' ( `' g |` ( A \ U. D ) ) ) | 
						
							| 8 | 7 | ad3antrrr |  |-  ( ( ( ( Fun g /\ dom g = B ) /\ ran g C_ A ) /\ Fun `' g ) -> Fun `' ( `' g |` ( A \ U. D ) ) ) | 
						
							| 9 | 4 8 | anim12i |  |-  ( ( Fun `' f /\ ( ( ( Fun g /\ dom g = B ) /\ ran g C_ A ) /\ Fun `' g ) ) -> ( Fun `' ( f |` U. D ) /\ Fun `' ( `' g |` ( A \ U. D ) ) ) ) | 
						
							| 10 |  | df-ima |  |-  ( f " U. D ) = ran ( f |` U. D ) | 
						
							| 11 |  | df-rn |  |-  ran ( f |` U. D ) = dom `' ( f |` U. D ) | 
						
							| 12 | 10 11 | eqtr2i |  |-  dom `' ( f |` U. D ) = ( f " U. D ) | 
						
							| 13 |  | df-ima |  |-  ( `' g " ( A \ U. D ) ) = ran ( `' g |` ( A \ U. D ) ) | 
						
							| 14 |  | df-rn |  |-  ran ( `' g |` ( A \ U. D ) ) = dom `' ( `' g |` ( A \ U. D ) ) | 
						
							| 15 | 13 14 | eqtri |  |-  ( `' g " ( A \ U. D ) ) = dom `' ( `' g |` ( A \ U. D ) ) | 
						
							| 16 | 1 2 | sbthlem4 |  |-  ( ( ( dom g = B /\ ran g C_ A ) /\ Fun `' g ) -> ( `' g " ( A \ U. D ) ) = ( B \ ( f " U. D ) ) ) | 
						
							| 17 | 15 16 | eqtr3id |  |-  ( ( ( dom g = B /\ ran g C_ A ) /\ Fun `' g ) -> dom `' ( `' g |` ( A \ U. D ) ) = ( B \ ( f " U. D ) ) ) | 
						
							| 18 |  | ineq12 |  |-  ( ( dom `' ( f |` U. D ) = ( f " U. D ) /\ dom `' ( `' g |` ( A \ U. D ) ) = ( B \ ( f " U. D ) ) ) -> ( dom `' ( f |` U. D ) i^i dom `' ( `' g |` ( A \ U. D ) ) ) = ( ( f " U. D ) i^i ( B \ ( f " U. D ) ) ) ) | 
						
							| 19 | 12 17 18 | sylancr |  |-  ( ( ( dom g = B /\ ran g C_ A ) /\ Fun `' g ) -> ( dom `' ( f |` U. D ) i^i dom `' ( `' g |` ( A \ U. D ) ) ) = ( ( f " U. D ) i^i ( B \ ( f " U. D ) ) ) ) | 
						
							| 20 |  | disjdif |  |-  ( ( f " U. D ) i^i ( B \ ( f " U. D ) ) ) = (/) | 
						
							| 21 | 19 20 | eqtrdi |  |-  ( ( ( dom g = B /\ ran g C_ A ) /\ Fun `' g ) -> ( dom `' ( f |` U. D ) i^i dom `' ( `' g |` ( A \ U. D ) ) ) = (/) ) | 
						
							| 22 | 21 | adantlll |  |-  ( ( ( ( Fun g /\ dom g = B ) /\ ran g C_ A ) /\ Fun `' g ) -> ( dom `' ( f |` U. D ) i^i dom `' ( `' g |` ( A \ U. D ) ) ) = (/) ) | 
						
							| 23 | 22 | adantl |  |-  ( ( Fun `' f /\ ( ( ( Fun g /\ dom g = B ) /\ ran g C_ A ) /\ Fun `' g ) ) -> ( dom `' ( f |` U. D ) i^i dom `' ( `' g |` ( A \ U. D ) ) ) = (/) ) | 
						
							| 24 |  | funun |  |-  ( ( ( Fun `' ( f |` U. D ) /\ Fun `' ( `' g |` ( A \ U. D ) ) ) /\ ( dom `' ( f |` U. D ) i^i dom `' ( `' g |` ( A \ U. D ) ) ) = (/) ) -> Fun ( `' ( f |` U. D ) u. `' ( `' g |` ( A \ U. D ) ) ) ) | 
						
							| 25 | 9 23 24 | syl2anc |  |-  ( ( Fun `' f /\ ( ( ( Fun g /\ dom g = B ) /\ ran g C_ A ) /\ Fun `' g ) ) -> Fun ( `' ( f |` U. D ) u. `' ( `' g |` ( A \ U. D ) ) ) ) | 
						
							| 26 | 3 | cnveqi |  |-  `' H = `' ( ( f |` U. D ) u. ( `' g |` ( A \ U. D ) ) ) | 
						
							| 27 |  | cnvun |  |-  `' ( ( f |` U. D ) u. ( `' g |` ( A \ U. D ) ) ) = ( `' ( f |` U. D ) u. `' ( `' g |` ( A \ U. D ) ) ) | 
						
							| 28 | 26 27 | eqtri |  |-  `' H = ( `' ( f |` U. D ) u. `' ( `' g |` ( A \ U. D ) ) ) | 
						
							| 29 | 28 | funeqi |  |-  ( Fun `' H <-> Fun ( `' ( f |` U. D ) u. `' ( `' g |` ( A \ U. D ) ) ) ) | 
						
							| 30 | 25 29 | sylibr |  |-  ( ( Fun `' f /\ ( ( ( Fun g /\ dom g = B ) /\ ran g C_ A ) /\ Fun `' g ) ) -> Fun `' H ) |