Step |
Hyp |
Ref |
Expression |
1 |
|
sbthlem.1 |
|- A e. _V |
2 |
|
sbthlem.2 |
|- D = { x | ( x C_ A /\ ( g " ( B \ ( f " x ) ) ) C_ ( A \ x ) ) } |
3 |
|
sbthlem.3 |
|- H = ( ( f |` U. D ) u. ( `' g |` ( A \ U. D ) ) ) |
4 |
1 2 3
|
sbthlem7 |
|- ( ( Fun f /\ Fun `' g ) -> Fun H ) |
5 |
1 2 3
|
sbthlem5 |
|- ( ( dom f = A /\ ran g C_ A ) -> dom H = A ) |
6 |
5
|
adantrl |
|- ( ( dom f = A /\ ( ( Fun g /\ dom g = B ) /\ ran g C_ A ) ) -> dom H = A ) |
7 |
4 6
|
anim12i |
|- ( ( ( Fun f /\ Fun `' g ) /\ ( dom f = A /\ ( ( Fun g /\ dom g = B ) /\ ran g C_ A ) ) ) -> ( Fun H /\ dom H = A ) ) |
8 |
7
|
an42s |
|- ( ( ( Fun f /\ dom f = A ) /\ ( ( ( Fun g /\ dom g = B ) /\ ran g C_ A ) /\ Fun `' g ) ) -> ( Fun H /\ dom H = A ) ) |
9 |
8
|
adantlr |
|- ( ( ( ( Fun f /\ dom f = A ) /\ ran f C_ B ) /\ ( ( ( Fun g /\ dom g = B ) /\ ran g C_ A ) /\ Fun `' g ) ) -> ( Fun H /\ dom H = A ) ) |
10 |
9
|
adantlr |
|- ( ( ( ( ( Fun f /\ dom f = A ) /\ ran f C_ B ) /\ Fun `' f ) /\ ( ( ( Fun g /\ dom g = B ) /\ ran g C_ A ) /\ Fun `' g ) ) -> ( Fun H /\ dom H = A ) ) |
11 |
1 2 3
|
sbthlem8 |
|- ( ( Fun `' f /\ ( ( ( Fun g /\ dom g = B ) /\ ran g C_ A ) /\ Fun `' g ) ) -> Fun `' H ) |
12 |
11
|
adantll |
|- ( ( ( ( ( Fun f /\ dom f = A ) /\ ran f C_ B ) /\ Fun `' f ) /\ ( ( ( Fun g /\ dom g = B ) /\ ran g C_ A ) /\ Fun `' g ) ) -> Fun `' H ) |
13 |
|
simpr |
|- ( ( Fun g /\ dom g = B ) -> dom g = B ) |
14 |
13
|
anim1i |
|- ( ( ( Fun g /\ dom g = B ) /\ ran g C_ A ) -> ( dom g = B /\ ran g C_ A ) ) |
15 |
|
df-rn |
|- ran H = dom `' H |
16 |
1 2 3
|
sbthlem6 |
|- ( ( ran f C_ B /\ ( ( dom g = B /\ ran g C_ A ) /\ Fun `' g ) ) -> ran H = B ) |
17 |
15 16
|
eqtr3id |
|- ( ( ran f C_ B /\ ( ( dom g = B /\ ran g C_ A ) /\ Fun `' g ) ) -> dom `' H = B ) |
18 |
14 17
|
sylanr1 |
|- ( ( ran f C_ B /\ ( ( ( Fun g /\ dom g = B ) /\ ran g C_ A ) /\ Fun `' g ) ) -> dom `' H = B ) |
19 |
18
|
adantll |
|- ( ( ( ( Fun f /\ dom f = A ) /\ ran f C_ B ) /\ ( ( ( Fun g /\ dom g = B ) /\ ran g C_ A ) /\ Fun `' g ) ) -> dom `' H = B ) |
20 |
19
|
adantlr |
|- ( ( ( ( ( Fun f /\ dom f = A ) /\ ran f C_ B ) /\ Fun `' f ) /\ ( ( ( Fun g /\ dom g = B ) /\ ran g C_ A ) /\ Fun `' g ) ) -> dom `' H = B ) |
21 |
10 12 20
|
jca32 |
|- ( ( ( ( ( Fun f /\ dom f = A ) /\ ran f C_ B ) /\ Fun `' f ) /\ ( ( ( Fun g /\ dom g = B ) /\ ran g C_ A ) /\ Fun `' g ) ) -> ( ( Fun H /\ dom H = A ) /\ ( Fun `' H /\ dom `' H = B ) ) ) |
22 |
|
df-f1 |
|- ( f : A -1-1-> B <-> ( f : A --> B /\ Fun `' f ) ) |
23 |
|
df-f |
|- ( f : A --> B <-> ( f Fn A /\ ran f C_ B ) ) |
24 |
|
df-fn |
|- ( f Fn A <-> ( Fun f /\ dom f = A ) ) |
25 |
24
|
anbi1i |
|- ( ( f Fn A /\ ran f C_ B ) <-> ( ( Fun f /\ dom f = A ) /\ ran f C_ B ) ) |
26 |
23 25
|
bitri |
|- ( f : A --> B <-> ( ( Fun f /\ dom f = A ) /\ ran f C_ B ) ) |
27 |
26
|
anbi1i |
|- ( ( f : A --> B /\ Fun `' f ) <-> ( ( ( Fun f /\ dom f = A ) /\ ran f C_ B ) /\ Fun `' f ) ) |
28 |
22 27
|
bitri |
|- ( f : A -1-1-> B <-> ( ( ( Fun f /\ dom f = A ) /\ ran f C_ B ) /\ Fun `' f ) ) |
29 |
|
df-f1 |
|- ( g : B -1-1-> A <-> ( g : B --> A /\ Fun `' g ) ) |
30 |
|
df-f |
|- ( g : B --> A <-> ( g Fn B /\ ran g C_ A ) ) |
31 |
|
df-fn |
|- ( g Fn B <-> ( Fun g /\ dom g = B ) ) |
32 |
31
|
anbi1i |
|- ( ( g Fn B /\ ran g C_ A ) <-> ( ( Fun g /\ dom g = B ) /\ ran g C_ A ) ) |
33 |
30 32
|
bitri |
|- ( g : B --> A <-> ( ( Fun g /\ dom g = B ) /\ ran g C_ A ) ) |
34 |
33
|
anbi1i |
|- ( ( g : B --> A /\ Fun `' g ) <-> ( ( ( Fun g /\ dom g = B ) /\ ran g C_ A ) /\ Fun `' g ) ) |
35 |
29 34
|
bitri |
|- ( g : B -1-1-> A <-> ( ( ( Fun g /\ dom g = B ) /\ ran g C_ A ) /\ Fun `' g ) ) |
36 |
28 35
|
anbi12i |
|- ( ( f : A -1-1-> B /\ g : B -1-1-> A ) <-> ( ( ( ( Fun f /\ dom f = A ) /\ ran f C_ B ) /\ Fun `' f ) /\ ( ( ( Fun g /\ dom g = B ) /\ ran g C_ A ) /\ Fun `' g ) ) ) |
37 |
|
dff1o4 |
|- ( H : A -1-1-onto-> B <-> ( H Fn A /\ `' H Fn B ) ) |
38 |
|
df-fn |
|- ( H Fn A <-> ( Fun H /\ dom H = A ) ) |
39 |
|
df-fn |
|- ( `' H Fn B <-> ( Fun `' H /\ dom `' H = B ) ) |
40 |
38 39
|
anbi12i |
|- ( ( H Fn A /\ `' H Fn B ) <-> ( ( Fun H /\ dom H = A ) /\ ( Fun `' H /\ dom `' H = B ) ) ) |
41 |
37 40
|
bitri |
|- ( H : A -1-1-onto-> B <-> ( ( Fun H /\ dom H = A ) /\ ( Fun `' H /\ dom `' H = B ) ) ) |
42 |
21 36 41
|
3imtr4i |
|- ( ( f : A -1-1-> B /\ g : B -1-1-> A ) -> H : A -1-1-onto-> B ) |