Step |
Hyp |
Ref |
Expression |
1 |
|
ovolsca.1 |
|- ( ph -> A C_ RR ) |
2 |
|
ovolsca.2 |
|- ( ph -> C e. RR+ ) |
3 |
|
ovolsca.3 |
|- ( ph -> B = { x e. RR | ( C x. x ) e. A } ) |
4 |
1
|
sseld |
|- ( ph -> ( y e. A -> y e. RR ) ) |
5 |
4
|
pm4.71rd |
|- ( ph -> ( y e. A <-> ( y e. RR /\ y e. A ) ) ) |
6 |
3
|
adantr |
|- ( ( ph /\ y e. RR ) -> B = { x e. RR | ( C x. x ) e. A } ) |
7 |
6
|
eleq2d |
|- ( ( ph /\ y e. RR ) -> ( ( ( 1 / C ) x. y ) e. B <-> ( ( 1 / C ) x. y ) e. { x e. RR | ( C x. x ) e. A } ) ) |
8 |
2
|
adantr |
|- ( ( ph /\ y e. RR ) -> C e. RR+ ) |
9 |
8
|
rprecred |
|- ( ( ph /\ y e. RR ) -> ( 1 / C ) e. RR ) |
10 |
|
remulcl |
|- ( ( ( 1 / C ) e. RR /\ y e. RR ) -> ( ( 1 / C ) x. y ) e. RR ) |
11 |
9 10
|
sylancom |
|- ( ( ph /\ y e. RR ) -> ( ( 1 / C ) x. y ) e. RR ) |
12 |
|
oveq2 |
|- ( x = ( ( 1 / C ) x. y ) -> ( C x. x ) = ( C x. ( ( 1 / C ) x. y ) ) ) |
13 |
12
|
eleq1d |
|- ( x = ( ( 1 / C ) x. y ) -> ( ( C x. x ) e. A <-> ( C x. ( ( 1 / C ) x. y ) ) e. A ) ) |
14 |
13
|
elrab3 |
|- ( ( ( 1 / C ) x. y ) e. RR -> ( ( ( 1 / C ) x. y ) e. { x e. RR | ( C x. x ) e. A } <-> ( C x. ( ( 1 / C ) x. y ) ) e. A ) ) |
15 |
11 14
|
syl |
|- ( ( ph /\ y e. RR ) -> ( ( ( 1 / C ) x. y ) e. { x e. RR | ( C x. x ) e. A } <-> ( C x. ( ( 1 / C ) x. y ) ) e. A ) ) |
16 |
|
simpr |
|- ( ( ph /\ y e. RR ) -> y e. RR ) |
17 |
16
|
recnd |
|- ( ( ph /\ y e. RR ) -> y e. CC ) |
18 |
8
|
rpcnd |
|- ( ( ph /\ y e. RR ) -> C e. CC ) |
19 |
8
|
rpne0d |
|- ( ( ph /\ y e. RR ) -> C =/= 0 ) |
20 |
17 18 19
|
divrec2d |
|- ( ( ph /\ y e. RR ) -> ( y / C ) = ( ( 1 / C ) x. y ) ) |
21 |
20
|
oveq2d |
|- ( ( ph /\ y e. RR ) -> ( C x. ( y / C ) ) = ( C x. ( ( 1 / C ) x. y ) ) ) |
22 |
17 18 19
|
divcan2d |
|- ( ( ph /\ y e. RR ) -> ( C x. ( y / C ) ) = y ) |
23 |
21 22
|
eqtr3d |
|- ( ( ph /\ y e. RR ) -> ( C x. ( ( 1 / C ) x. y ) ) = y ) |
24 |
23
|
eleq1d |
|- ( ( ph /\ y e. RR ) -> ( ( C x. ( ( 1 / C ) x. y ) ) e. A <-> y e. A ) ) |
25 |
7 15 24
|
3bitrd |
|- ( ( ph /\ y e. RR ) -> ( ( ( 1 / C ) x. y ) e. B <-> y e. A ) ) |
26 |
25
|
pm5.32da |
|- ( ph -> ( ( y e. RR /\ ( ( 1 / C ) x. y ) e. B ) <-> ( y e. RR /\ y e. A ) ) ) |
27 |
5 26
|
bitr4d |
|- ( ph -> ( y e. A <-> ( y e. RR /\ ( ( 1 / C ) x. y ) e. B ) ) ) |
28 |
27
|
abbi2dv |
|- ( ph -> A = { y | ( y e. RR /\ ( ( 1 / C ) x. y ) e. B ) } ) |
29 |
|
df-rab |
|- { y e. RR | ( ( 1 / C ) x. y ) e. B } = { y | ( y e. RR /\ ( ( 1 / C ) x. y ) e. B ) } |
30 |
28 29
|
eqtr4di |
|- ( ph -> A = { y e. RR | ( ( 1 / C ) x. y ) e. B } ) |