Description: If the scalar multiplication operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 5-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | scaffval.b | |- B = ( Base ` W ) |
|
scaffval.f | |- F = ( Scalar ` W ) |
||
scaffval.k | |- K = ( Base ` F ) |
||
scaffval.a | |- .xb = ( .sf ` W ) |
||
scaffval.s | |- .x. = ( .s ` W ) |
||
Assertion | scafeq | |- ( .x. Fn ( K X. B ) -> .xb = .x. ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scaffval.b | |- B = ( Base ` W ) |
|
2 | scaffval.f | |- F = ( Scalar ` W ) |
|
3 | scaffval.k | |- K = ( Base ` F ) |
|
4 | scaffval.a | |- .xb = ( .sf ` W ) |
|
5 | scaffval.s | |- .x. = ( .s ` W ) |
|
6 | 1 2 3 4 5 | scaffval | |- .xb = ( x e. K , y e. B |-> ( x .x. y ) ) |
7 | fnov | |- ( .x. Fn ( K X. B ) <-> .x. = ( x e. K , y e. B |-> ( x .x. y ) ) ) |
|
8 | 7 | biimpi | |- ( .x. Fn ( K X. B ) -> .x. = ( x e. K , y e. B |-> ( x .x. y ) ) ) |
9 | 6 8 | eqtr4id | |- ( .x. Fn ( K X. B ) -> .xb = .x. ) |