Metamath Proof Explorer


Theorem scaffn

Description: The scalar multiplication operation is a function. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses scaffval.b
|- B = ( Base ` W )
scaffval.f
|- F = ( Scalar ` W )
scaffval.k
|- K = ( Base ` F )
scaffval.a
|- .xb = ( .sf ` W )
Assertion scaffn
|- .xb Fn ( K X. B )

Proof

Step Hyp Ref Expression
1 scaffval.b
 |-  B = ( Base ` W )
2 scaffval.f
 |-  F = ( Scalar ` W )
3 scaffval.k
 |-  K = ( Base ` F )
4 scaffval.a
 |-  .xb = ( .sf ` W )
5 eqid
 |-  ( .s ` W ) = ( .s ` W )
6 1 2 3 4 5 scaffval
 |-  .xb = ( x e. K , y e. B |-> ( x ( .s ` W ) y ) )
7 ovex
 |-  ( x ( .s ` W ) y ) e. _V
8 6 7 fnmpoi
 |-  .xb Fn ( K X. B )