Description: The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | scaffval.b | |- B = ( Base ` W ) |
|
scaffval.f | |- F = ( Scalar ` W ) |
||
scaffval.k | |- K = ( Base ` F ) |
||
scaffval.a | |- .xb = ( .sf ` W ) |
||
scaffval.s | |- .x. = ( .s ` W ) |
||
Assertion | scafval | |- ( ( X e. K /\ Y e. B ) -> ( X .xb Y ) = ( X .x. Y ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scaffval.b | |- B = ( Base ` W ) |
|
2 | scaffval.f | |- F = ( Scalar ` W ) |
|
3 | scaffval.k | |- K = ( Base ` F ) |
|
4 | scaffval.a | |- .xb = ( .sf ` W ) |
|
5 | scaffval.s | |- .x. = ( .s ` W ) |
|
6 | oveq12 | |- ( ( x = X /\ y = Y ) -> ( x .x. y ) = ( X .x. Y ) ) |
|
7 | 1 2 3 4 5 | scaffval | |- .xb = ( x e. K , y e. B |-> ( x .x. y ) ) |
8 | ovex | |- ( X .x. Y ) e. _V |
|
9 | 6 7 8 | ovmpoa | |- ( ( X e. K /\ Y e. B ) -> ( X .xb Y ) = ( X .x. Y ) ) |