Metamath Proof Explorer


Theorem scmatf

Description: There is a function from a ring to any ring of scalar matrices over this ring. (Contributed by AV, 25-Dec-2019)

Ref Expression
Hypotheses scmatrhmval.k
|- K = ( Base ` R )
scmatrhmval.a
|- A = ( N Mat R )
scmatrhmval.o
|- .1. = ( 1r ` A )
scmatrhmval.t
|- .* = ( .s ` A )
scmatrhmval.f
|- F = ( x e. K |-> ( x .* .1. ) )
scmatrhmval.c
|- C = ( N ScMat R )
Assertion scmatf
|- ( ( N e. Fin /\ R e. Ring ) -> F : K --> C )

Proof

Step Hyp Ref Expression
1 scmatrhmval.k
 |-  K = ( Base ` R )
2 scmatrhmval.a
 |-  A = ( N Mat R )
3 scmatrhmval.o
 |-  .1. = ( 1r ` A )
4 scmatrhmval.t
 |-  .* = ( .s ` A )
5 scmatrhmval.f
 |-  F = ( x e. K |-> ( x .* .1. ) )
6 scmatrhmval.c
 |-  C = ( N ScMat R )
7 eqid
 |-  ( Base ` A ) = ( Base ` A )
8 eqid
 |-  ( 0g ` R ) = ( 0g ` R )
9 2 7 1 8 6 scmatid
 |-  ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` A ) e. C )
10 3 9 eqeltrid
 |-  ( ( N e. Fin /\ R e. Ring ) -> .1. e. C )
11 10 anim1ci
 |-  ( ( ( N e. Fin /\ R e. Ring ) /\ x e. K ) -> ( x e. K /\ .1. e. C ) )
12 1 2 6 4 smatvscl
 |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. K /\ .1. e. C ) ) -> ( x .* .1. ) e. C )
13 11 12 syldan
 |-  ( ( ( N e. Fin /\ R e. Ring ) /\ x e. K ) -> ( x .* .1. ) e. C )
14 13 5 fmptd
 |-  ( ( N e. Fin /\ R e. Ring ) -> F : K --> C )