Step |
Hyp |
Ref |
Expression |
1 |
|
scmatrhmval.k |
|- K = ( Base ` R ) |
2 |
|
scmatrhmval.a |
|- A = ( N Mat R ) |
3 |
|
scmatrhmval.o |
|- .1. = ( 1r ` A ) |
4 |
|
scmatrhmval.t |
|- .* = ( .s ` A ) |
5 |
|
scmatrhmval.f |
|- F = ( x e. K |-> ( x .* .1. ) ) |
6 |
|
scmatrhmval.c |
|- C = ( N ScMat R ) |
7 |
|
eqid |
|- ( Base ` A ) = ( Base ` A ) |
8 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
9 |
2 7 1 8 6
|
scmatid |
|- ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` A ) e. C ) |
10 |
3 9
|
eqeltrid |
|- ( ( N e. Fin /\ R e. Ring ) -> .1. e. C ) |
11 |
10
|
anim1ci |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ x e. K ) -> ( x e. K /\ .1. e. C ) ) |
12 |
1 2 6 4
|
smatvscl |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. K /\ .1. e. C ) ) -> ( x .* .1. ) e. C ) |
13 |
11 12
|
syldan |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ x e. K ) -> ( x .* .1. ) e. C ) |
14 |
13 5
|
fmptd |
|- ( ( N e. Fin /\ R e. Ring ) -> F : K --> C ) |