Metamath Proof Explorer


Theorem scmatf1o

Description: There is a bijection between a ring and any ring of scalar matrices with positive dimension over this ring. (Contributed by AV, 26-Dec-2019)

Ref Expression
Hypotheses scmatrhmval.k
|- K = ( Base ` R )
scmatrhmval.a
|- A = ( N Mat R )
scmatrhmval.o
|- .1. = ( 1r ` A )
scmatrhmval.t
|- .* = ( .s ` A )
scmatrhmval.f
|- F = ( x e. K |-> ( x .* .1. ) )
scmatrhmval.c
|- C = ( N ScMat R )
Assertion scmatf1o
|- ( ( N e. Fin /\ N =/= (/) /\ R e. Ring ) -> F : K -1-1-onto-> C )

Proof

Step Hyp Ref Expression
1 scmatrhmval.k
 |-  K = ( Base ` R )
2 scmatrhmval.a
 |-  A = ( N Mat R )
3 scmatrhmval.o
 |-  .1. = ( 1r ` A )
4 scmatrhmval.t
 |-  .* = ( .s ` A )
5 scmatrhmval.f
 |-  F = ( x e. K |-> ( x .* .1. ) )
6 scmatrhmval.c
 |-  C = ( N ScMat R )
7 1 2 3 4 5 6 scmatf1
 |-  ( ( N e. Fin /\ N =/= (/) /\ R e. Ring ) -> F : K -1-1-> C )
8 1 2 3 4 5 6 scmatfo
 |-  ( ( N e. Fin /\ R e. Ring ) -> F : K -onto-> C )
9 8 3adant2
 |-  ( ( N e. Fin /\ N =/= (/) /\ R e. Ring ) -> F : K -onto-> C )
10 df-f1o
 |-  ( F : K -1-1-onto-> C <-> ( F : K -1-1-> C /\ F : K -onto-> C ) )
11 7 9 10 sylanbrc
 |-  ( ( N e. Fin /\ N =/= (/) /\ R e. Ring ) -> F : K -1-1-onto-> C )