Step |
Hyp |
Ref |
Expression |
1 |
|
scmatrhmval.k |
|- K = ( Base ` R ) |
2 |
|
scmatrhmval.a |
|- A = ( N Mat R ) |
3 |
|
scmatrhmval.o |
|- .1. = ( 1r ` A ) |
4 |
|
scmatrhmval.t |
|- .* = ( .s ` A ) |
5 |
|
scmatrhmval.f |
|- F = ( x e. K |-> ( x .* .1. ) ) |
6 |
|
scmatrhmval.c |
|- C = ( N ScMat R ) |
7 |
1 2 3 4 5 6
|
scmatf |
|- ( ( N e. Fin /\ R e. Ring ) -> F : K --> C ) |
8 |
|
eqid |
|- ( Base ` A ) = ( Base ` A ) |
9 |
1 2 8 3 4 6
|
scmatscmid |
|- ( ( N e. Fin /\ R e. Ring /\ y e. C ) -> E. c e. K y = ( c .* .1. ) ) |
10 |
9
|
3expa |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ y e. C ) -> E. c e. K y = ( c .* .1. ) ) |
11 |
1 2 3 4 5
|
scmatrhmval |
|- ( ( R e. Ring /\ c e. K ) -> ( F ` c ) = ( c .* .1. ) ) |
12 |
11
|
adantll |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ c e. K ) -> ( F ` c ) = ( c .* .1. ) ) |
13 |
12
|
eqcomd |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ c e. K ) -> ( c .* .1. ) = ( F ` c ) ) |
14 |
13
|
eqeq2d |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ c e. K ) -> ( y = ( c .* .1. ) <-> y = ( F ` c ) ) ) |
15 |
14
|
biimpd |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ c e. K ) -> ( y = ( c .* .1. ) -> y = ( F ` c ) ) ) |
16 |
15
|
reximdva |
|- ( ( N e. Fin /\ R e. Ring ) -> ( E. c e. K y = ( c .* .1. ) -> E. c e. K y = ( F ` c ) ) ) |
17 |
16
|
adantr |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ y e. C ) -> ( E. c e. K y = ( c .* .1. ) -> E. c e. K y = ( F ` c ) ) ) |
18 |
10 17
|
mpd |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ y e. C ) -> E. c e. K y = ( F ` c ) ) |
19 |
18
|
ralrimiva |
|- ( ( N e. Fin /\ R e. Ring ) -> A. y e. C E. c e. K y = ( F ` c ) ) |
20 |
|
dffo3 |
|- ( F : K -onto-> C <-> ( F : K --> C /\ A. y e. C E. c e. K y = ( F ` c ) ) ) |
21 |
7 19 20
|
sylanbrc |
|- ( ( N e. Fin /\ R e. Ring ) -> F : K -onto-> C ) |