Metamath Proof Explorer


Theorem scmatmat

Description: An N x N scalar matrix over (the ring) R is an N x N matrix over (the ring) R . (Contributed by AV, 18-Dec-2019)

Ref Expression
Hypotheses scmatmat.a
|- A = ( N Mat R )
scmatmat.b
|- B = ( Base ` A )
scmatmat.s
|- S = ( N ScMat R )
Assertion scmatmat
|- ( ( N e. Fin /\ R e. V ) -> ( M e. S -> M e. B ) )

Proof

Step Hyp Ref Expression
1 scmatmat.a
 |-  A = ( N Mat R )
2 scmatmat.b
 |-  B = ( Base ` A )
3 scmatmat.s
 |-  S = ( N ScMat R )
4 eqid
 |-  ( Base ` R ) = ( Base ` R )
5 eqid
 |-  ( 1r ` A ) = ( 1r ` A )
6 eqid
 |-  ( .s ` A ) = ( .s ` A )
7 4 1 2 5 6 3 scmatel
 |-  ( ( N e. Fin /\ R e. V ) -> ( M e. S <-> ( M e. B /\ E. c e. ( Base ` R ) M = ( c ( .s ` A ) ( 1r ` A ) ) ) ) )
8 simpl
 |-  ( ( M e. B /\ E. c e. ( Base ` R ) M = ( c ( .s ` A ) ( 1r ` A ) ) ) -> M e. B )
9 7 8 syl6bi
 |-  ( ( N e. Fin /\ R e. V ) -> ( M e. S -> M e. B ) )