Step |
Hyp |
Ref |
Expression |
1 |
|
scmatmat.a |
|- A = ( N Mat R ) |
2 |
|
scmatmat.b |
|- B = ( Base ` A ) |
3 |
|
scmatmat.s |
|- S = ( N ScMat R ) |
4 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
5 |
|
eqid |
|- ( 1r ` A ) = ( 1r ` A ) |
6 |
|
eqid |
|- ( .s ` A ) = ( .s ` A ) |
7 |
4 1 2 5 6 3
|
scmatel |
|- ( ( N e. Fin /\ R e. V ) -> ( M e. S <-> ( M e. B /\ E. c e. ( Base ` R ) M = ( c ( .s ` A ) ( 1r ` A ) ) ) ) ) |
8 |
|
simpl |
|- ( ( M e. B /\ E. c e. ( Base ` R ) M = ( c ( .s ` A ) ( 1r ` A ) ) ) -> M e. B ) |
9 |
7 8
|
syl6bi |
|- ( ( N e. Fin /\ R e. V ) -> ( M e. S -> M e. B ) ) |