Step |
Hyp |
Ref |
Expression |
1 |
|
scmatrhmval.k |
|- K = ( Base ` R ) |
2 |
|
scmatrhmval.a |
|- A = ( N Mat R ) |
3 |
|
scmatrhmval.o |
|- .1. = ( 1r ` A ) |
4 |
|
scmatrhmval.t |
|- .* = ( .s ` A ) |
5 |
|
scmatrhmval.f |
|- F = ( x e. K |-> ( x .* .1. ) ) |
6 |
|
scmatrhmval.c |
|- C = ( N ScMat R ) |
7 |
|
scmatghm.s |
|- S = ( A |`s C ) |
8 |
|
simpr |
|- ( ( N e. Fin /\ R e. Ring ) -> R e. Ring ) |
9 |
|
eqid |
|- ( Base ` A ) = ( Base ` A ) |
10 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
11 |
2 9 1 10 6
|
scmatsrng |
|- ( ( N e. Fin /\ R e. Ring ) -> C e. ( SubRing ` A ) ) |
12 |
7
|
subrgring |
|- ( C e. ( SubRing ` A ) -> S e. Ring ) |
13 |
11 12
|
syl |
|- ( ( N e. Fin /\ R e. Ring ) -> S e. Ring ) |
14 |
1 2 3 4 5 6 7
|
scmatghm |
|- ( ( N e. Fin /\ R e. Ring ) -> F e. ( R GrpHom S ) ) |
15 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
16 |
|
eqid |
|- ( mulGrp ` S ) = ( mulGrp ` S ) |
17 |
1 2 3 4 5 6 7 15 16
|
scmatmhm |
|- ( ( N e. Fin /\ R e. Ring ) -> F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) |
18 |
14 17
|
jca |
|- ( ( N e. Fin /\ R e. Ring ) -> ( F e. ( R GrpHom S ) /\ F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) ) |
19 |
15 16
|
isrhm |
|- ( F e. ( R RingHom S ) <-> ( ( R e. Ring /\ S e. Ring ) /\ ( F e. ( R GrpHom S ) /\ F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) ) ) |
20 |
8 13 18 19
|
syl21anbrc |
|- ( ( N e. Fin /\ R e. Ring ) -> F e. ( R RingHom S ) ) |