Step |
Hyp |
Ref |
Expression |
1 |
|
scmatrhmval.k |
|- K = ( Base ` R ) |
2 |
|
scmatrhmval.a |
|- A = ( N Mat R ) |
3 |
|
scmatrhmval.o |
|- .1. = ( 1r ` A ) |
4 |
|
scmatrhmval.t |
|- .* = ( .s ` A ) |
5 |
|
scmatrhmval.f |
|- F = ( x e. K |-> ( x .* .1. ) ) |
6 |
|
scmatrhmval.c |
|- C = ( N ScMat R ) |
7 |
1 2 3 4 5
|
scmatrhmval |
|- ( ( R e. Ring /\ X e. K ) -> ( F ` X ) = ( X .* .1. ) ) |
8 |
7
|
3adant1 |
|- ( ( N e. Fin /\ R e. Ring /\ X e. K ) -> ( F ` X ) = ( X .* .1. ) ) |
9 |
|
3simpa |
|- ( ( N e. Fin /\ R e. Ring /\ X e. K ) -> ( N e. Fin /\ R e. Ring ) ) |
10 |
|
simp3 |
|- ( ( N e. Fin /\ R e. Ring /\ X e. K ) -> X e. K ) |
11 |
2
|
matring |
|- ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) |
12 |
11
|
3adant3 |
|- ( ( N e. Fin /\ R e. Ring /\ X e. K ) -> A e. Ring ) |
13 |
|
eqid |
|- ( Base ` A ) = ( Base ` A ) |
14 |
13 3
|
ringidcl |
|- ( A e. Ring -> .1. e. ( Base ` A ) ) |
15 |
12 14
|
syl |
|- ( ( N e. Fin /\ R e. Ring /\ X e. K ) -> .1. e. ( Base ` A ) ) |
16 |
1 2 13 4
|
matvscl |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( X e. K /\ .1. e. ( Base ` A ) ) ) -> ( X .* .1. ) e. ( Base ` A ) ) |
17 |
9 10 15 16
|
syl12anc |
|- ( ( N e. Fin /\ R e. Ring /\ X e. K ) -> ( X .* .1. ) e. ( Base ` A ) ) |
18 |
|
oveq1 |
|- ( c = X -> ( c .* .1. ) = ( X .* .1. ) ) |
19 |
18
|
eqeq2d |
|- ( c = X -> ( ( X .* .1. ) = ( c .* .1. ) <-> ( X .* .1. ) = ( X .* .1. ) ) ) |
20 |
19
|
adantl |
|- ( ( ( N e. Fin /\ R e. Ring /\ X e. K ) /\ c = X ) -> ( ( X .* .1. ) = ( c .* .1. ) <-> ( X .* .1. ) = ( X .* .1. ) ) ) |
21 |
|
eqidd |
|- ( ( N e. Fin /\ R e. Ring /\ X e. K ) -> ( X .* .1. ) = ( X .* .1. ) ) |
22 |
10 20 21
|
rspcedvd |
|- ( ( N e. Fin /\ R e. Ring /\ X e. K ) -> E. c e. K ( X .* .1. ) = ( c .* .1. ) ) |
23 |
1 2 13 3 4 6
|
scmatel |
|- ( ( N e. Fin /\ R e. Ring ) -> ( ( X .* .1. ) e. C <-> ( ( X .* .1. ) e. ( Base ` A ) /\ E. c e. K ( X .* .1. ) = ( c .* .1. ) ) ) ) |
24 |
23
|
3adant3 |
|- ( ( N e. Fin /\ R e. Ring /\ X e. K ) -> ( ( X .* .1. ) e. C <-> ( ( X .* .1. ) e. ( Base ` A ) /\ E. c e. K ( X .* .1. ) = ( c .* .1. ) ) ) ) |
25 |
17 22 24
|
mpbir2and |
|- ( ( N e. Fin /\ R e. Ring /\ X e. K ) -> ( X .* .1. ) e. C ) |
26 |
8 25
|
eqeltrd |
|- ( ( N e. Fin /\ R e. Ring /\ X e. K ) -> ( F ` X ) e. C ) |