Description: The value of the ring homomorphism F . (Contributed by AV, 22-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | scmatrhmval.k | |- K = ( Base ` R ) |
|
scmatrhmval.a | |- A = ( N Mat R ) |
||
scmatrhmval.o | |- .1. = ( 1r ` A ) |
||
scmatrhmval.t | |- .* = ( .s ` A ) |
||
scmatrhmval.f | |- F = ( x e. K |-> ( x .* .1. ) ) |
||
Assertion | scmatrhmval | |- ( ( R e. V /\ X e. K ) -> ( F ` X ) = ( X .* .1. ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scmatrhmval.k | |- K = ( Base ` R ) |
|
2 | scmatrhmval.a | |- A = ( N Mat R ) |
|
3 | scmatrhmval.o | |- .1. = ( 1r ` A ) |
|
4 | scmatrhmval.t | |- .* = ( .s ` A ) |
|
5 | scmatrhmval.f | |- F = ( x e. K |-> ( x .* .1. ) ) |
|
6 | oveq1 | |- ( x = X -> ( x .* .1. ) = ( X .* .1. ) ) |
|
7 | simpr | |- ( ( R e. V /\ X e. K ) -> X e. K ) |
|
8 | ovexd | |- ( ( R e. V /\ X e. K ) -> ( X .* .1. ) e. _V ) |
|
9 | 5 6 7 8 | fvmptd3 | |- ( ( R e. V /\ X e. K ) -> ( F ` X ) = ( X .* .1. ) ) |