Metamath Proof Explorer


Theorem scmatrhmval

Description: The value of the ring homomorphism F . (Contributed by AV, 22-Dec-2019)

Ref Expression
Hypotheses scmatrhmval.k
|- K = ( Base ` R )
scmatrhmval.a
|- A = ( N Mat R )
scmatrhmval.o
|- .1. = ( 1r ` A )
scmatrhmval.t
|- .* = ( .s ` A )
scmatrhmval.f
|- F = ( x e. K |-> ( x .* .1. ) )
Assertion scmatrhmval
|- ( ( R e. V /\ X e. K ) -> ( F ` X ) = ( X .* .1. ) )

Proof

Step Hyp Ref Expression
1 scmatrhmval.k
 |-  K = ( Base ` R )
2 scmatrhmval.a
 |-  A = ( N Mat R )
3 scmatrhmval.o
 |-  .1. = ( 1r ` A )
4 scmatrhmval.t
 |-  .* = ( .s ` A )
5 scmatrhmval.f
 |-  F = ( x e. K |-> ( x .* .1. ) )
6 oveq1
 |-  ( x = X -> ( x .* .1. ) = ( X .* .1. ) )
7 simpr
 |-  ( ( R e. V /\ X e. K ) -> X e. K )
8 ovexd
 |-  ( ( R e. V /\ X e. K ) -> ( X .* .1. ) e. _V )
9 5 6 7 8 fvmptd3
 |-  ( ( R e. V /\ X e. K ) -> ( F ` X ) = ( X .* .1. ) )